1,510
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Prediction of slurry operating temperature and biogas production rate using ambient temperature forecast as input parameter for underground brick-built biogas digesters

ORCID Icon & | (Reviewing editor)
Article: 2034375 | Received 08 Oct 2021, Accepted 04 Jan 2022, Published online: 12 Feb 2022

References

  • Almomani, F. (2020). Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel, 280. Retrieved from 10.1016/j.fuel.2020.118573
  • Castano, J. M., Martin, J. F., & Ciotola, R. (2014). Performance of a small-scale, variable temperature fixed dome digester in a temperate climate. Energies, 7(9), 5701–12. https://doi.org/10.3390/en7095701
  • Cheng, S., Huba, E. M., Li, A. Z., & Mang, H. P. (2013). A review of prefabricated biogas digesters in China. Renewable and Sustainable Energy Reviews, 28 (1) , 738–748. https://doi.org/10.1016/j.rser.2013.08.030
  • Dhaked, R., Singh, P., & Singh, L. (2010). Biomethanation under psychrophilic conditions. Waste Manage, 30(12), 2490–2496. https://doi.org/10.1016/j.wasman.2010.07.015
  • Gebreegziabher, Z., Naik, L., Melamu, R., & Balana, B. B. (2014). Prospects and challenges for urban application of biogas installations in Sub-Saharan Africa. Biomass and Bioenergy, 70 (1) , 130–140. https://doi.org/10.1016/j.biombioe.2014.02.036
  • Guo, P., Zhou, J., Ma, R., Yu, N., & Yuan, Y. (2019). Biogas production and heat transfer performance of a multiphase flow digester. Energies (10) , 12 https://doi.org/10.3390/en12101960.
  • Ho, T. B., Roberts, T. K., & Lucas, S. (2015). Small-scale household biogas digesters as a viable option for energy recovery and global warming mitigation—vietnam case study. Journal of Agricultural Science and Technology, 5 (1) , 387–395 doi:10.17265/2161-6256/2015.06.002.
  • Jegede, A. O., Zeeman, G., & Bruning, H. (2019). A review of mixing, design and loading conditions in household anaerobic digesters. Critical Reviews In Environmental Science And Technology, 49(22), 2117–2153. https://doi.org/10.1080/10643389.2019.1607441
  • Kornelius, G., & Msibi, S. S. (2017). Potential for domestic biogas as household energy supply in South Africa. Journal of Energy in Southern Africa, 28(2), 1–13. https://doi.org/10.17159/2413-3051/2017/v28i2a1754
  • Liebetrau, J., O’Shea, R., Wellisch, M., Lyng, K.-A., Bochmann, G., McCabe, B. K., and Murphy, J. D. (2021). Potential and utilization of manure to generate biogas in seven countries. IEA Bioenergy Task 37, 6.
  • Mane, A. B., Rao, B., & Rao, A. B. (2015). Characterization of fruit and vegetable waste for maximizing the biogas yield. International Journal of Advanced Technology Engineering and Science, 3(1), 489–500.
  • Meegoda, J. N., Li, B., Wang, L. B., & Patel, K. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health 15 (10) , 1–16 doi:10.3390/ijerph15102224.
  • Merlin, G., Kohler, F., Bouvier, M., Lissolo, T., & Boileau, H. (2012). Importance of heat transfer in an anaerobic digestion plant in a continental climate context. Bioresource Technology, 124 (1) , 59–67. https://doi.org/10.1016/j.biortech.2012.08.018
  • Mukumba, P., Makaka, G., & Shonhiwa, C. (2015). An assessment of the performance of a biogas digester when insulated with sawdust. International Journal of Energy and Power Engineering, 4(2), 24–31. https://doi.org/10.11648/j.ijepe.20150402.12
  • Perrigaulta, T., Weatherfordb, V., Martí-Herreroa, J., & Poggioc, D. (2012). Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model. Bioresource Technology, 124(21), 259–268. https://doi.org/10.1016/j.biortech.2012.08.019
  • Prasad, R. D. (2012). Empirical study on factors affecting biogas production. ISRN Renewable Energy, 2012, 1–7. https://doi.org/10.5402/2012/136959
  • Rabbi, S. M., Biswas, S., & Salam, B. (2015). Biogas from mesophilic anaerobic digestion of cow dung using silica gel as catalyst. Procedia Engineering, 105 (1) , 652–657. https://doi.org/10.1016/j.proeng.2015.05.044
  • Ramaswamy, J., & Vemareddy, P. S. (2015). Production of biogas using small-scale plug flow reactor and sizing calculation for biodegradable solid waste. Renewables: Wind, Water, and Solar, 2(6), 1–4. https://doi.org/10.1186/s40807-015-0006-0
  • Rastogi, G., Ranade, D. R., Tulshiram, Y. Y., Patole, M. S., & Shouche, Y. S. (2008). Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresource Technology, 99(13), 5317–5326. https://doi.org/10.1016/j.biortech.2007.11.024
  • Rennuit, C., & Sommer, S. G. (2013). Decision support for the construction of farm-scale biogas digesters in developing countries with cold seasons. Energies, 6(10), 5314–5332. https://doi.org/10.3390/en6105314
  • Shukla, P. R., Ahlgren, E. O., & Mittal, S. (2018). Barriers to biogas dissemination in India: A review. Energy Policy, 112 (1) , 361–370. https://doi.org/10.1016/j.enpol.2017.10.027
  • Sime, G. (2020). Technical and socioeconomic constraints to the domestication and functionality of biogas technology in rural areas of southern Ethiopia. Cogent Engineering, 7(1). 10.1080/23311916.2020.1765686
  • Singh, G., Jain, V. K., & Singh, A. (2017). Effect of temperature and other factors on anaerobic digestion process, responsible for bio gas production. International Journal of Theoretical and Applied Mechanics, 12(3), 637–657.
  • Suresh, B., Pudasaini, S. P., Khanal, S. N., & Gurung, D. B. (2013). Mathematical modelling, finite element simulation and experimental validation of biogas-digester slurry temperature. International Journal of Energy and Power Engineering, 3(2), 128–135 doi:10.11648/j.ijepe.20130203.17.
  • Uzodinma, E. O., Ofoefule, A. U., Eze, J. I., & Onwuka, N. D. (2007). Optimum mesophilic temperature of biogas production from blends of agro-based wastes. Trends in Applied Sciences Research, 2(1), 39–44. https://doi.org/10.3923/tasr.2007.39.44
  • Wang, S., Ma, F., Ma, W., Wang, P., Zhao, G., & Lu, X. (2019). Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 11 (1), 1–13 https://doi.org/10.3390/w11010133.
  • Wen, L. V., Wenfei, Z., & Zhongtang, Y. (2016). Volume ratios between the thermophilic and the mesophilic digesters of a temperature phased anaerobic digestion system affect their performance and microbial communities. New Biotechnology, 33(1), 245–254. https://doi.org/10.1016/j.nbt.2015.07.001
  • Westerholm, M., Isaksson, S., Lindsjö, O. K., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226 (1), 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045