3,003
Views
1
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Modeling of bioethanol production through glucose fermentation using Saccharomyces cerevisiae immobilized on sodium alginate beads

ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 2049438 | Received 22 Nov 2021, Accepted 25 Feb 2022, Published online: 24 Mar 2022

References

  • Aguilar-Uscanga, M. G., Garcia-Alvarado, Y., Gomez-Rodriguez, J., Phister, T., Delia, M. L., & Strehaiano, P. (2011). Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations. Letters in Applied Microbiology, 53(2), 141–21. https://doi.org/10.1111/j.1472-765X.2011.03081.x
  • Azhar, S. H. M., & Abdulla, R. (2018). Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 14, 457–465. https://doi.org/10.1016/j.bcab.2018.04.013
  • Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
  • Bangrak, P., Limtong, S., & Phisalaphong, M. (2011). Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Brazilian Journal of Microbiology, 42(2), 676–684. https://doi.org/10.1590/S1517-83822011000200032
  • Bird, R. B., Stewart, W. E., Lightfoot, E. N., & Klingenberg, D. J. (2015). Introductory transport phenomena. John Wiley & Sons, Inc.USA.
  • Beltran, G., Torija, M. J., Novo, M., Ferrer, N., Poblet, M., Guillamón, J. M., Rozès, N., & Mas, A. (2002). Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Systematic and Applied Microbiology, 25(2), 287–293. 10.1078/0723-2020-00097
  • Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S., & Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A review. (2018). Food Technology and Biotechnology, 56(3), 289. 5546. https://doi.org/10.17113/ftb.56.03.18.5546
  • Beltran, G., Torija, M. J., Novo, M., Ferrer, N., Poblet, M., Guillamón, J. M., Rozès, N., & Mas, A. (2002). Analysis of yeast populations during alcoholic fermentation: A six-year follow-up study. Systematic Applied Microbiology, 25(2), 287–293. https://doi.org/10.1078/0723-2020-00097
  • Chacón‐Navarrete, H., Martín, C., & Moreno‐García, J. (2021). Yeast immobilization systems for second‐generation ethanol production: Actual trends and future perspectives. Biofuels, Bioproducts and Biorefining, 15(5), 1549–1565. https://doi.org/10.1002/bbb.2250
  • Chen, H. Z., Liu, Z. H., & Dai, S. H. (2014). A novel solid-state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnology for Biofuels, 7(53), 1–13. https://doi.org/10.1186/1754-6834-7-53
  • Damayanti, A., Kumoro, A. C., & Bahlawan, Z. A. S. Review calcium alginate beads as immobilizing matrix of functional cells: Extrusion dripping method, characteristics, and application. (2021). IOP Conference Series: Materials Science and Engineering, 1053(1), 012017. IOP publishing. https://doi.org/10.1088/1757-899X/1053/1/012017
  • Damayanti, A. S., Sediawan, W. B., & Sediawan, W. B. (2020). Biohydrogen production by reusing immobilized mixed culture in batch system. International Journal of Renewable Energy Development, 9(1), 37–42. https://doi.org/10.14710/ijred.9.1.37-42
  • Duarte, J. C., Rodrigues, J. A. R., Moran, P. J. S., Valença, G. P., & Nunhez, J. R. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express, 3(31), 1–8. https://doi.org/10.1186/2191-0855-3-31
  • Eisenberg, T., & Büttner, S. (2014). Lipids and cell death in yeast. FEMS Yeast Research, 14(1), 179–197. https://doi.org/10.1111/1567-1364.12105
  • Estape, D., Godia, F., & Sola, C. (1992). Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel. Enzyme and Microbial Technology, 14(5), 396–401. https://doi.org/10.1016/0141-0229(92)90009-D
  • Galaction, A. I., Lupăşteanu, A. M., Turnea, M., & Caşcaval, D. (2010). Effect on internal diffusion on bioethanol production in a bioreactor with yeasts cells immobilized on mobile beds. Environmental Engineering and Management Journal, 9(5), 675–680. https://doi.org/10.30638/eemj.2010.092
  • Gil, L. S., & Maupoey, P. F. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284
  • Harcum, S. W., & Caldwell, T. P. (2020). High gravity fermentation of sugarcane bagasse hydrolysate by Saccharomyces pastorianus to produce economically distillable ethanol concentrations: Necessity of medium components examined. Fermentation, 6(1), 8. https://doi.org/10.3390/fermentation6010008
  • Hossain, N., Zaini, J. H., & Mahlia, T. M. I. (2017). A review of bioethanol production from plant-based waste biomass by yeast fermentation. International Journal of Technology, 1(1), 5–18. https://doi.org/10.14716/ijtech.v8i1.3948
  • Hu, X. H., Wang, M. H., Tan, T., Li, J. R., Yang, H., Leach, L., Zhang, R. M., & Luo, Z. W. (2007). Genetic Dissection of Ethanol Tolerance in the Budding Yeast Saccharomyces cerevisiae. Genetics, 175(3), 1479–1487. https://doi.org/10.1534/genetics.106.065292
  • Huang, C. J., Lu, M. Y., Chang, Y. W., & Li, W. H. (2018). Experimental evolution of yeast for high-temperature tolerance. Molecular Biology and Evolution, 35(8), 1823–1839. https://doi.org/10.1093/molbev/msy077
  • Karagoz, P., Bill, R. M., & Ozkan, M. (2019). Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renewable Energy, 143, 741–752. https://doi.org/10.1016/j.renene.2019.05.045
  • Kostov, G., Popova, S., Gochev, V., Koprinkova-Hristova, P., Angelov, M., & Georgieva, A. (2012). Modeling of batch alcohol fermentation with free and immobilized yeasts Saccharomyces Cerevisiae 46 EVD. Biotechnology & Biotechnological Equipment, 26(3), 3021–3030. https://doi.org/10.5504/BBEQ.2012.0025
  • Kuloyo, O. O., Du Preez, J. C., Del Prado García-aparicio, M., Kilian, S. G., Steyn, L., & Görgens, J. (2014). Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 30(12), 3173–3183. https://doi.org/10.1007/s11274-014-1745-6
  • Kumoro, A. C., Damayanti, A., Bahlawan, Z. A., Melina, M., & Puspawati, H. Bioethanol production from oil palm empty fruit bunches using Saccharomyces cerevisiae immobilized on sodium alginate beads. (2021). Periodica Polytechnica Chemical Engineering, 65(4), 493–504. 16775. https://doi.org/10.3311/PPch.16775
  • Kwolek-Mirek, M., & Zadrag-Tecza, R. (2014). Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Research, 14(7), 1068–1079. https://doi.org/10.1111/1567-1364.12202
  • Kyriakou, M., Chatziiona, V. K., Costa, C. N., Kallis, M., Koutsokeras, L., Constantinides, G., & Koutinas, M. (2019). Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization. Applied Energy, 242, 480–491. https://doi.org/10.1016/j.apenergy.2019.03.024
  • Landaeta, R., Acevedo, F., & Aroca, G. (2019). Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 42, 1–5. https://doi.org/10.1016/j.ejbt.2019.08.001. 001.
  • Lee, K. H., Choi, I. S., Kim, Y. G., Yang, D. J., & Bae, H. J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology, 102(17), 8191–8198. https://doi.org/10.1016/j.biortech.2011.06 063
  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  • Lee, S. Y., Park, J. M., & Kim, T. Y. (2011). Application of metabolic flux analysis in metabolic engineering. In C. Voigt (Ed.), Synthetic biology, Part B - computer aided design and DNA assembly (pp. 67–93). Elsevier Inc. https://doi.org/10.1016/b978-0-12-385120-8.00004-8
  • Lee, J. S., Park, E. H., Kim, J. W., Yeo, S. H., & Kim, M. D. (2013). Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit. Journal of Microbiology and Biotechnology, 23(9), 1253–1259. https://doi.org/10.4014/jmb.1307.07050
  • Lin, N. X., Xu, Y., & Yu, X. W. (2021). Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing, 1–14. https://doi.org/10.1007/s43393-021-00058-4
  • Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., & Huang, W. (2015). Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4), M800–M808. https://doi.org/10.1111/1750-3841.12813
  • Liu, R., & Shen, F. (2008). Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology, 99(4), 847–854. https://doi.org/10.1016/j.biortech.2007.01
  • Malhotra, I., & Basir, S. F. (2020). Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production. Preparative Biochemistry & Biotechnology, 50(5), 494–503. https://doi.org/10.1080/10826068.2019.1709979
  • Manheim, D. C., Detwiler, R. L., & Jiang, S. C. (2019). Application of unstructured kinetic models to predict microcystin biodegradation: Towards a practical approach for drinking water treatment. Water Research, 149, 617–631. https://doi.org/10.1016/j.watres.2018.11.014
  • Mears, L., Stocks, S. M., Albaek, M. O., Sin, G., & Gernaey, K. V. (2017). Mechanistic fermentation models for process design, monitoring, and control. Trends in Biotechnology, 35(10), 914–924. https://doi.org/10.1016//j.tibtech.2017.07.002
  • Mishra, A., Sharma, A. K., Sharma, S., Bagai, R., Mathur, A. S., Gupta, R. P., & Tuli, D. K. (2016). Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor. Renewable Energy, 98, 57–63. https://doi.org/10.1016/j.renene.2016.02.010
  • Murari, C. S., Machado, W. R. C., Schuina, G. L., & Del Bianchi, V. L. (2019). Optimization of bioethanol production from cheese whey using Kluyveromyces marxianus URM 7404. Biocatalysis and Agricultural Biotechnology, 20, 101182. https://doi.org/10.1016/j.bcab.2019.101182
  • Najafpour, G., Younesi, H., Syahidah, K., & Ismail, K. (2004). Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technology, 92(3), 251–260. https://doi.org/10.1016/j.biortech.2003.09.009
  • Nikolić, S., Mojović, L., Rakin, M., Pejin, J., Djukić-Vuković, A., & Bulatović, M. (2012). Simultaneous enzymatic saccharification and fermentation (SSF) in bioethanol production from corn meal by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Journal of Chemical Science and Technology, 1(1), 21–26.
  • Nordmeier, A., & Chidambaram, D. (2018). Use of Zymomonas mobilis immobilized in doped calcium alginate threads for ethanol production. Energy, 165, 603–609. https://doi.org/10.1016/j.energy.2018.09.137. 10.1016/ j. energy.2018.09.137.
  • Nuanpeng, S., Thanonkeo, S., Klanrit, P., & Thanonkeo, P. (2018). Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Brazilian Journal of Microbiology, 49(1), 140–150. https://doi.org/10.1016/j.bjm.2017.12.011
  • Peña, A., Sánchez, N. S., Álvarez, H., Calahorra, M., & Ramírez, J. (2015). Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Research, 15(2). https://doi.org/10.1093/femsyr/fou005
  • Phisalaphong, M., Srirattana, N., & Tanthapanichakoon, W. (2006). Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 28(1), 36–43. https://doi.org/10.1016/j.bej.2005.08.039
  • Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80, 330–340. https://doi.org/10.1016/j.rser.2017.05.225
  • Rattanapan, A., Limtong, S., & Phisalaphong, M. (2011). Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Applied Energy, 88(12), 4400–4404. https://doi.org/10.1016/j.apenergy.2011.05.020
  • Riley, M. R., Muzzio, F. J., Buettner, H. M., & Reyes, S. C. (1996). A simple correlation for predicting effective diffusivities in immobilized cell systems. Journal of Biotechnology and Bioengineering, 49(2), 223–227. https://doi.org/10.1002/bit 260490202
  • Saha, K., Verma, P., Sikder, J., Chakraborty, S., & Curcio, S. (2019). Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renewable Energy, 133, 66–76. https://doi.org/10.1016/j.renene.2018.10.014
  • Scott, C. D., Woodward, C. A., & Thompson, J. E. (1989). Solute diffusion in biocatalyst gel beads containing biocatalysis and other additives. Enzyme and Microbial Technology, 11(5), 258–263. https://doi.org/10.1016/0141-0229(89)90040-9
  • Silva-Illanes, F., Tapia-Venegas, E., Schiappacasse, M. C., Trably, E., & Ruiz-Filippi, G. (2017). Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy, 141, 358–367. https://doi.org/10.1016/j.energy.2017.09.073
  • Sivarathnakumar, S., Jayamuthunagai, J., Baskar, G., Praveenkumar, R., Selvakumari, I. A. E., & Bharathiraja, B. (2019). Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresource Technology, 293, 122060. https://doi.org/10.1016/j.biortech.2019.122060
  • Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 109(1), 13–24. https://doi.org/10.1111/j.1365-2672.2009.04657.x
  • Tkavc, R., Matrosova, V. Y., Grichenko, O. E., Gostinčar, C., Volpe, R. P., Klimenkova, P., Gaidamakova, E. K., Zhou, C. E., Stewart, B. J., Lyman, M. G., Malfatti, S. A., Rubinfeld, B., Courtot, M., Singh, J., Dalgard, C. L., Hamilton, T., Frey, K. G., Gunde-Cimerman, N., Dugan, L., & Daly, M. J. (2018). Prospects for fungal bioremediation of acidic radioactive waste sites: Characterization and genome sequence of Rhodotorula taiwanensis MD1149. Frontiers in Microbiology, 8, 2528. https://doi.org/10.3389/fmicb.2017.02528
  • Todhanakasem, T., Wu, B., & Simeon, S. (2020). Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World Journal of Microbiology and Biotechnology, 36(8), 1–16. https://doi.org/10.1007/s11274-020-02885-4
  • Tofighi, A., Assadi, M. M., Asadirad, M. H. A., & Karizi, S. Z. (2014). Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. Journal of Environmental Health Science and Engineering, 12(1), 1–6. https://doi.org/10.1186/2052-336X-12-107
  • Ünal, M. Ü., Chowdhury, G., & Şener, A. (2020). Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels, 1–5. https://doi.org/10.1080/17597269.2020.1724440
  • Vives, C., Casas, C., Gdia, F., & Sola, C. (1993). Microbiology biotechnology determination of the intrinsic fermentation kinetics of Saccharomyces cerevisiae cells immobilized in Ca-alginate beads and observations on their growth. Applied Microbiology and Biotechnology, 38(4), 467–472. https://doi.org/10.1007/BF00242939
  • Woo, J.-M., Yang, K.-M., Kim, S.-U., Blank, L. M., & Park, J.-B. (2014). High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Applied Microbiology and Biotechnology, 98(13), 6085–6094. https://doi.org/10.1007/s00253-014-5691-x
  • Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal, 2014, 1–12. https://doi.org/10.1155/2014/957102
  • Zakhartsev, M., & Reuss, M. (2018). Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Research, 18(6), 1–16. https://doi.org/10.1093/femsyr/foy052
  • Zentou, H., Abidin, Z. Z., Yunus, R., Biak, D. R. A., Issa, M. A., & Pudza, M. Y. (2021). A new model of alcoholic fermentation under a by-product inhibitory effect. ACS Omega, 6(6), 4137–4146. https://doi.org/10.1021/acsomega.0c04025
  • Zentou, H., Abidin, Z. Z., Yunus, R., Biak, D. R. A., & Korelskiy, D. (2019). Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes, 7(7), 458. https://doi.org/10.3390/pr7070458
  • Żur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization. Molecules, 21(7), 958. https://doi.org/10.3390/molecules21070958