1,225
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Proposal and comprehensive thermodynamic performance analysis of a new geothermal combined cooling, heating and power system

, , , , , & | (Reviewing editor) show all
Article: 2075131 | Received 01 Mar 2022, Accepted 25 Apr 2022, Published online: 24 May 2022

References

  • Abdolalipouradl, M., Khalilarya, S., & Jafarmadar, S. (2019). Exergoeconomic analysis of a novel integrated transcritical CO2 and Kalina 11 cycles from Sabalan geothermal power plant. Energy Conversion and Management, 1951, 420–18. https://doi.org/10.1016/j.enconman.2019.05.027
  • Agrawal, Y., Bhagoria, J. L., Gautam, A., Kumar Chaurasiya, P., Arockia Dhanraj, J., Muthiya Solomon, J. S., Salyanf. (2022). Experimental evaluation of hydrothermal performance of solar air heater with discrete roughened plate. Applied Thermal Engineering, 211(7), 118379. https://doi.org/10.1016/j.applthermaleng.2022.118379
  • Chaurasiya, P. K., Singh, S. K., Jain, P. K., Rajak, U., Verma, T. N., Azad, A. K. et al. (2021). Heat transfer and friction factor correlations for double pipe heat exchanger with inner and outer corrugation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(1), 1–28. https://doi.org/10.1080/15567036.2021.1953635
  • Choudhari, M. S., Chaurasiya, P. K., Thakur, M., Paswan, M., & Sharma, V. K. (2021). Performance investigation of the hydrogen-based energy storage system employing high-pressure metal hydride pair. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–13. https://doi.org/10.1080/15567036.2021.2000070
  • Dasore, A., Rajak, U., Panchal, M., Reddy, V. N., Verma, T. N., & Chaurasiya, P. K. (2022). Prediction of overall characteristics of a dual fuel CI engine working on low-density ethanol and diesel blends at varying compression ratios. Arabian Journal for Science and Engineering, 1–8, . https://doi.org/10.1007/s13369-022-06625-8
  • Dhanraj, J. A., Mostafaeipour, A., Velmurugan, K., Techato, K., Chaurasiya, P. K., Solomon, J. M. et al. (2021). An effective evaluation on fault detection in solar panels. Energies, 14(22), 7770. https://doi.org/10.3390/en14227770
  • Guzović, Z., Majcen, B., & Cvetković, S. (2012). Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources. Applied Energy, 98, 404–414. https://doi.org/10.1016/j.apenergy.2012.03.064
  • Heberle, F., & Brüggemann, D. (2010). Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation. Applied Thermal Engineering, 30(11–12), 1326–1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012
  • Heberle, F., & Brüggemann, D. (2015). Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures. Energies, 8(3), 2097–2124. https://doi.org/10.3390/en8032097
  • Huang, B., Chang, J., Wang, C., & Petrenko, V. (1999). A 1-D analysis of ejector performance. International Journal of Refrigeration, 22(5), 354–364. https://doi.org/10.1016/S0140-7007(99)00004-3
  • Ipakchi, O., Mosaffa, A. H., & Garousi Farshi, L. (2019). Ejector based CO2 transcritical combined cooling and power system utilizing waste heat recovery: A thermoeconomic assessment. Energy Conversion and Management, 186(4), 462–472. https://doi.org/10.1016/j.enconman.2019.03.009
  • Jalilinasrabady, S., Itoi, R., Valdimarsson, P., Saevarsdottir, G., & Fujii, H. (2012). Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics, 43(7), 75–82. https://doi.org/10.1016/j.geothermics.2012.02.003
  • Kazemi, N., & Samadi, F. (2016). Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources. Energy Conversion and Management, 121(8), 391–401. https://doi.org/10.1016/j.enconman.2016.05.046
  • Lemmon, E. W., Huber, M. L., & Mclinden, M. O. (2010). NIST standard reference database 23: Reference fluid thermodynamic and transport properties - REFPROP, version 9.1. Standard Reference Data Program, National Institute of Standards and Technology. NIST NSRDS.
  • Li, T., Zhu, J., & Zhang, W. (2012). Cascade utilization of low temperature geothermal water in oilfield combined power generation, gathering heat tracing and oil recovery. Applied Thermal Engineering, 40, 27–35. https://doi.org/10.1016/j.applthermaleng.2012.01.049
  • Moghimi, M., Emadi, M., Ahmadi, P., & Moghadasi, H. (2018). 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration. Applied Thermal Engineering, 141, 516–530. https://doi.org/10.1016/j.applthermaleng.2018.05.075
  • Mosaffa, A. H., & Farshi, L. G. (2018). Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications. Renewable Energy, 120, 134–150. https://doi.org/10.1016/j.renene.2017.12.099
  • Nami, H., & Anvari-Moghaddam, A. (2020). Geothermal driven micro-CCHP for domestic application – exergy, economic and sustainability analysis. Energy, 207. https://doi.org/10.1016/j.energy.2020.118195
  • Omar, A., Saghafifar, M., Mohammadi, K., Alashkar, A., & Gadalla, M. (2019). A review of unconventional bottoming cycles for waste heat recovery: part II - applications. Energy Conversion and Management, 180(1), 110905. https://doi.org/10.1016/j.enconman.2018.10.088
  • Ozcan, N. Y., & Gokcen, G. (2009). Thermodynamic assessment of gas removal systems for single-flash geothermal power plants. Applied Thermal Engineering, 29(14–15), 3246–3253. https://doi.org/10.1016/j.applthermaleng.2009.04.031
  • Pambudi, N. A., Itoi, R., Jalilinasrabady, S., & Jaelani, K. (2014). Exergy analysis and optimization of dieng single-flash geothermal power plant. Energy Conversion and Management, 78, 405–411. https://doi.org/10.1016/j.enconman.2013.10.073
  • Parham, K., Khamooshi, M., Tematio, D. B. K., Yari, M., & Atikol, U. (2014). Absorption heat transformers - A comprehensive review. Renewable & Sustainable Energy Reviews, 34(1), 430–452. https://doi.org/10.1016/j.rser.2014.03.036
  • Park, S., Kim, J., Yoon, M., Rhim, D., & Yeom, C. (2018). Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 130, 611–623. https://doi.org/10.1016/j.applthermaleng.2017.10.145
  • Ren, C., Wang, J., Chen, H., Liu, X., & An, M. (2021). Thermodynamic analysis and comparative investigation of a new combined heating and power system driving by medium-and-high temperature geothermal water. Energy Conversion and Management, 233. https://doi.org/10.1016/j.enconman.2021.113914
  • Rostamnejad, H., & Zare, V. (2019). Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: thermodynamic analysis and optimization. International Journal of Refrigeration, 101, 56–70. https://doi.org/10.1016/j.ijrefrig.2019.02.031
  • Rostamnejad Takleh, H., & Zare, V. (2019). Employing thermoelectric generator and booster compressor for performance improvement of a geothermal driven combined power and ejector-refrigeration cycle. Energy Conversion and Management, 186, 120–130. https://doi.org/10.1016/j.enconman.2019.02.047
  • Shokati, N., Ranjbar, F., & Yari, M. (2015). Comparative and parametric study of double flash and single flash/ORC combined cycles based on exergoeconomic criteria. Applied Thermal Engineering, 91, 479–495. https://doi.org/10.1016/j.applthermaleng.2015.08.031
  • Singh, T. S., Rajak, U., Samuel, O. D., Chaurasiya, P. K., Natarajan, K., Verma, T. N. et al. (2021). Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae spirulina (L.) – response surface methodology and full factorial method approach. Fuel, 285, 119103. https://doi.org/10.1016/j.fuel.2020.119103
  • Takleh, H. R., & Zare, V. (2021). Proposal and thermoeconomic evaluation with reliability considerations of geothermal driven trigeneration systems with independent operations for summer and winter. International Journal of Refrigeration, 127, 34–46. https://doi.org/10.1016/j.ijrefrig.2020.12.033
  • Tang, Z., Wu, C., Liu, C., Xu, X., & Liu, J. (2021). Thermodynamic analysis and comparison of a novel dual-ejector based organic flash combined power and refrigeration cycle driven by the low-grade heat source. Energy Conversion and Management, 239, 114205. https://doi.org/10.1016/j.enconman.2021.114205
  • Tang, J., Zhang, Q., Zhang, Z., Li, Q., Wu, C., & Wang, X. (2022). Development and performance assessment of a novel combined power system integrating a supercritical carbon dioxide Brayton cycle with an absorption heat transformer. Energy Conversion and Management, 251, 114992. https://doi.org/10.1016/j.enconman.2021.114992
  • Thakur, V. K., Gaur, M. K., Dhamneya, A. K., & Chaurasiya, P. K. (2021). Validation of thermal models to predict the productivity and heat transfer coefficients for passive solar still with different nanoparticles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–21. https://doi.org/10.1080/15567036.2021.1971338
  • Wang, J., Wang, J., Dai, Y., & Zhao, P. (2015). Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics, 55, 69–77. https://doi.org/10.1016/j.geothermics.2015.01.012
  • Wang, S., Liu, C., Zhang, C., Xu, X., & Li, Q. (2018). Thermo-economic evaluations of dual pressure organic Rankine cycle (DPORC) driven by geothermal heat source. Journal of Renewable and Sustainable Energy, 10(6), 063901. https://doi.org/10.1063/1.5034062
  • Wang, S., Liu, C., Ren, J., Liu, L., Li, Q., & Huo, E. (2019). Carbon footprint analysis of organic Rankine cycle system using zeotropic mixtures considering leak of fluid. Journal of Cleaner Production, 239, 118095. https://doi.org/10.1016/j.jclepro.2019.118095
  • Wang, J., Ren, C., Gao, Y., Chen, H., & Dong, J. (2020). Performance investigation of a new geothermal combined cooling, heating and power system. Energy Conversion and Management, 208, 112591. https://doi.org/10.1016/j.enconman.2020.112591
  • Wu, C., Xu, X., Li, Q., Li, X., Liu, L., & Liu, C. (2021). Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle. Energy Conversion and Management, 227, 113562. https://doi.org/10.1016/j.enconman.2020.113562
  • Yari, M. (2010). Exergetic analysis of various types of geothermal power plants. Renewable Energy, 35(1), 112–121. https://doi.org/10.1016/j.renene.2009.07.023
  • Yen, R. H., Huang, B. J., Chen, C. Y., Shiu, T. Y., Cheng, C. W., Chen, S. S. (2013). Performance optimization for a variable throat ejector in a solar refrigeration system. International Journal of Refrigeration, 36(5), 1512–1520. https://doi.org/10.1016/j.ijrefrig.2013.04.005
  • Zare, V., & Rostamnejad Takleh, H. (2020). Novel geothermal driven CCHP systems integrating ejector transcritical CO2 and Rankine cycles: thermodynamic modeling and parametric study. Energy Conversion and Management, 205, 112396. https://doi.org/10.1016/j.enconman.2019.112396
  • Zhang, C., Liu, C., Wang, S., Xu, X., & Li, Q. (2017). Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations. Energy, 123(3), 728–741. https://doi.org/10.1016/j.energy.2017.01.132
  • Zhao, Y., & Wang, J. (2016). Exergoeconomic analysis and optimization of a flash-binary geothermal power system. Applied Energy, 179, 159–170. https://doi.org/10.1016/j.apenergy.2016.06.108
  • Zhou, Y., Tang, J., Zhang, C., & Li, Q. (2019). Thermodynamic analysis of the air-cooled transcritical Rankine cycle using CO2/R161 mixture based on natural draft dry cooling towers. Energies, 12(17), 3342. https://doi.org/10.3390/en12173342