1,932
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Mechanical properties of particleboard made from leather shavings and waste papers

ORCID Icon, , & | (Reviewing editor)
Article: 2076350 | Received 09 Feb 2022, Accepted 05 May 2022, Published online: 29 May 2022

References

  • Adeniran, A. T. (2021). Properties of particleboard made from recycled polystyrene and cocos nucifera stem particles. Open Journal of Agricultural Research, 1 (1) , 1–13. doi:10.31586/ojar.2021.010101
  • Agustini, C., Costa, M., & Gutterres, M. (2018). Biogas production from tannery solid wastes scale-up and cost saving analysis. Journal of Cleaner Production, 187 (2018) , 158–164. doi:10.1016/j.jclepro.2018.03.185
  • Aksogan, O., Resatoglu, R., & Binici, H. (2017). An environment friendly new insulation material involving waste newsprint papers reinforced by cane stalks. Journal of Building Engineering. Elsevier Ltd. doi:10.1016/j.jobe.2017.10.011
  • Al-mosawi, A. I., Rijab, M. A., Abdullah, N., & Mahdi, S. (2014). Flexural strength of fiber reinforced composite. International Journal of Enhanced Research in Science Technology & Engineering, 2(1), 4–7. www.erpublications.com.
  • Batiancela, M. A., & Acda, M. N. (2014). Particleboard from waste tea leaves and wood particles. Journal of Composite Materials, 1–6. doi:10.1177/0021998313480196
  • Bhagyashekar, M. S. (2014). “Characterization of mechanical behavior of metallic and non- metallic particulate filled epoxy matrix composites.” Journal of Reinforced Plastics and Composites, 29(1), 28–42. doi:10.1177/0731684408095034
  • Cruz, V. C. A., Nóbrega, M. M. S., Silva, W. P., Carvalho, L. H., & Lima, A. G. B., 2011. An experimental study of water absorption in polyester composites reinforced with macambira natural fiber. 11, Vol. 2011 (Wiley), 11. doi:10.1002/mawe.201100840.
  • Członka, S., Bertino, M. F., Strzelec, K., Strąkowska, A., & Masłowski, M. (2018). Rigid polyurethane foams reinforced with solid waste generated in leather industry. Journal of Polymer Testing 69(2018), 225–237 . doi:10.1016/j.polymertesting.2018.05.013
  • Daramola, O. O., Adediran, A. A., & Omotayo, B. (2017). Mechanical properties and water absorption behaviour of treated pineapple leaf fibre reinforced polyester matrix composites. Leonardo Journal of Sciences, 30(30) , 15–30 www.researchgate.net/publication/318701540.
  • Durowaye, S. I., Lawal, G. I., Akande, M. A., & Durowaye, V. O. (2014). Mechanical properties of particulate coconut shell and palm fruit polyester composites. International Journal of Materials Engineering, 4(4), 141–147. doi:10.5923/j.ijme.20140404.04
  • Hernández, D., Fernández-puratich, H., Cataldo, F., & González, J. (2020). Particle boards made with Prunus avium fruit waste. Case Studies in Construction, 12(2020) , 4–9. doi:10.1016/j.cscm.2020.e00336
  • Konikkara, N., Kennedy, L. J., & Vijaya, J. J. (2016). Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. Journal of Hazardous Materials, 318(2016) , 173–185. doi:10.1016/j.jhazmat.2016.06.037
  • Limited, W. P. (2012). Fibre–polymer composites for aerospace structures. Structures and Engine Book. Wood head publishing. doi:10.1533/9780857095152.338
  • Madueke, C. I., & Bolasodun, B. (2017). Mechanical properties of tere-phthalic unsaturated polyester resin reinforced with varying weight fractions of particulate snail shell. Journal of Polymer and Textile Engineering (IOSR-JPTE) Fractions of Particulate, 1(4), 39–44 www.iosrjournals.org.
  • Marta, P., Auriga, R., Kristak, L., & Antov, P. (2022). Physical and mechanical properties of particleboard produced with addition of walnut (Juglans Regia L.) wood residues. Materials, 15(4), 1280. https://doi.org/10.3390/ma15041280
  • Mehdi, M., & Maraghi, R. (2018). A.Tabei, and M.Madanipoor. Effect of board density, resin percentage and pressing temperature on particleboard properties made from mixing of poplar wood slab, citrus branches and twigs of beech. Wood Research, 63(4), 669–682.
  • Mitchual, S. J., & Mensah, P. (2020). Characterization of particleboard produced from residues of plantain pseudostem, Cocoa Pod and stem and ceiba. Materials Sciences and Applications, 11(12), 817–836. https://doi.org/10.4236/msa.2020.1112054
  • Mushahary, J. (2017). Waste management in leather industry - environmental and health effects and suggestions to use in construction purpose. International Journal of Civil Engineering and Technology (IJCIET), 8(4), 1394–1401 http://iaeme.com/Home/journal/IJCIET.
  • Njoku, R. E., Okon, A. E., & Ikpaki, T. C. (2011). Effects of variation of particle size and weight fraction on the tensile strength and modulus of periwinkle shell reinforced polyester composite. Nigerian Journal of Technology, 30(2), 87–93.
  • Nourbakhsh, A. (2009). Particleboard made from waste paper treated with maleic anhydride. Waste Management & Research, 28(1), 51–55. https://doi.org/10.1177/0734242X09336463
  • Nurdin, H., Hasanuddin, W., & S, M. Characteristics of particleboard from waste nypa fruticans wurmb characteristics of particleboard from waste nypa fruticans wurmb. Journal of physics: conference series 1387 (2019). 012103 IOP https://doi.org/10.1088/1742-6596/1387/1/012103
  • Nurul, M., Mohammad, A., & Julkapli, N. M. (2019). Dimensional stability of natural fiber-based and hybrid composites. Mechanical and Physical Testing of Biocomposites. Fibre-Reinforced Composites and Hybrid Composites (pp. 61–79) . Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102292-4.00004-7
  • Park. (2011). Element and processing. Interface Science and Composites. 18, 47–94 . Elsevier Ltd. https://doi.org/10.1016/B978-0-12-375049-5.00006-2
  • Ponsubbiah, S., Suryanarayana, S., & Gupta, S. (2018). Composite from Leather Waste. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 7(3), 77–80.
  • Priebe, G. P. S., Kipper, E., Gusmão, A. L., Marcilio, N. R., & Gutterres, M. (2016). Anaerobic digestion of chrome-tanned leather waste for biogas production. Journal of Cleaner Production, 129 2 , 410–416. https://doi.org/10.1016/j.jclepro.2016.04.038
  • Rahaman, A., Hosen, R., Bashar, K., Afroze, J. S., Habiba, U., & Naher, B. (2016). Extraction of chromium from leather chrome shaving dust. International Journal of Scientific & Technology Research, 5(10).
  • Reinprecht, Particleboards from recycled pallets. Forests 2021, 12, 1597. https://doi.org/10.3390/f12111597
  • Reinprecht, L. (2020). Particleboards from Recycled Wood. Forests, 11(11), 1166. https://doi.org/10.3390/f111111661–1
  • Risnasari, I., Nuryawan, A., & Siallagan, N. F. Characterization of particleboard from waste tea leaves (camellia sinensis L) and meranti wood (shorea Sp) using urea-formaldehyde adhesive and it’s formaldehyde emission. International Conference on Natural Resources and Technology 2019; 1, 261–264. https://doi.org/10.5220/0008552702610264
  • Rodrigues, E. F., Maia, T. F., & Mulinari, D. R. (2011). Tensile strength of polyester resin reinforced sugarcane bagasse fibers modified by estherification. Procedia Engineering, 10 2011 , 2348–2352. https://doi.org/10.1016/j.proeng.2011.04.387
  • San, B., Ayrilmis, N., & Gumuskaya, E. (2014). Effects of chemical composition of wood and resin type on properties of particleboard. Peer-reviewed Article on Lignocellulose, 1(3), 174–184.
  • Sethuraman, C., Srinivas, K., & Sekaran, G. (2013). Double pyrolysis of chrome tanned leather solid waste for safe disposal and products recovery. International Journal of Scientific & Engineering Research, 4(11), 61–67.
  • Shamszadeh, V. A., Zanjani, M., Mofidi, Tabrizi, M. A., & Yazdani, S. (2013). Comparison of flexural strength of several composite resins available in Iran. Journal of Dental School, 31(3), 170–176.
  • Suwan, A., Sukhawipat, N., Uthaipan, N., & Saetung, A. (2020). Progress in organic coatings some properties of experimental particleboard manufactured from waste bamboo using modified recycled palm oil as adhesive. Progress in Organic Coatings, 149 (2020), 105899 https://doi.org/10.1016/jporgcoat.2020.105899. Contents
  • Teklay, A., Gebeyehu, G., Getachew, T., Yaynshet, T., Inbasekaran, S., & Sastry, T. P. (2018). Preparation of value added composite sheet from solid waste leather - A prototype design. Scientific Research and Essays, 13(2), 11–13. https://doi.org/10.5897/SRE2017.6551
  • Tezara, C., Siregar, J. P., Moey, L. K., & Wei, L. J. (2016). Factors that affect the mechanical properties of kenaf fiber reinforced polymer : A review. Journal of Mechanical Engineering and Sciences (JMES), 10(2), 2159–2175 https://doi.org/10.15282/jmes.10.2.2016.19.0203.
  • Wieland, S., Ostrowski, S., Plank, B., Mies, B., & Petutschnigg, A. (2020). Assessment of mechanical properties of wood-leather panels and the differences in the panel structure by means of X-Ray computed tomography. Bio Resources, 8(2013), 818–832.
  • Wu, W., Wang, Q., & Li, W. (2018). Comparison of tensile and compressive properties of carbon/glass interlayer and intralayer hybrid composites. Materials, 11, 1105. https://doi.org/10.3390/ma110711057