850
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Fatigue behaviour and damage characterization of quasi-isotropic carbon/epoxy laminates

, , & | (Reviewing editor)
Article: 2077680 | Received 09 Jan 2022, Accepted 08 May 2022, Published online: 02 Jun 2022

References

  • Alam, P., Mamalis, D., Robert, C., Christophe, F, Conchur, B (2019). The fatigue of carbon fibre reinforced plastics - A review. Composites Part B: Engineering, 166, 555–15. https://doi.org/10.1016/j.compositesb.2019.02.016
  • Ansari, M. T. A., Singh, K. K., & Azam, M. S. (2018). Fatigue damage analysis of fiber-reinforced polymer composites—A review. Journal of Reinforced Plastics and Composites, 37(9), 636–654. https://doi.org/10.1177/0731684418754713
  • Capela, C., Oliveira, S. E., & Ferreira, J. A. M. (2019). Fatigue behavior of short carbon fiber reinforced epoxy composites. Composites Part B: Engineering, 164, 191–197. https://doi.org/10.1016/j.compositesb.2018.11.035
  • Carraro, P. A., & Quaresimin, M. (2015). A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. International Journal of Solids and Structures, 58, 34–51. https://doi.org/10.1016/j.ijsolstr.2014.12.016
  • De Finis, R., & Palumbo, D. (2020). Estimation of the dissipative heat sources related to the total energy input of a cfrp composite by using the second amplitude harmonic of the thermal signal. Materials (Basel), 13(12), 1–18. https://doi.org/10.3390/ma13122820
  • De Finis, R., Palumbo, D., & Galietti, U. (2021). An experimental procedure based on infrared thermography for the assessment of crack density in quasi-isotropic CFRP. Engineering Fracture Mechanics, 258, 108108. https://doi.org/10.1016/j.engfracmech.2021.108108
  • Degrieck, J., & Van Paepegem, W. (2001). Fatigue damage modeling of fibre-reinforced composite materials: Review. Applied Mechanics Reviews, 54(4), 279–300. https://doi.org/10.1115/1.1381395
  • Giancane, S., Panella, F. W., & Dattoma, V. (2010). Characterization of fatigue damage in long fiber epoxy composite laminates. International Journal of Fatigue, 32(1), 46–53. https://doi.org/10.1016/j.ijfatigue.2009.02.024
  • Habibi, M., Laperrière, L., & Hassanabadi, H. M. (2019). Effect of moisture absorption and temperature on quasi-static and fatigue behavior of nonwoven flax epoxy composite. Composites Part B: Engineering, 166, 31–40. https://doi.org/10.1016/j.compositesb.2018.11.131
  • Huang, J., Pastor, M. L., Garnier, C., & Gong, X. J. (2019). A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates. International Journal of Fatigue, 120, 87–95. https://doi.org/10.1016/j.ijfatigue.2018.11.002
  • Llobet, J., Maimí, P., Mayugo, J. A., Essa, Y., & Martin de la Escalera, F. (2017). A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings. International Journal of Fatigue, 103, 508–515. https://doi.org/10.1016/j.ijfatigue.2017.06.026
  • Mallick, P. K. (2007). Fiber- reinforced composites materials, manufacturing and design, third. CRC Press Taylor & Francis Group.
  • Mohd Tahir, M., Wang, W. X., & Matsubara, T. (2018). Failure behavior of quasi-isotropic carbon fiber-reinforced polyamide composites under tension. Advanced Composite Materials, 27(5), 483–497. https://doi.org/10.1080/09243046.2017.1405605
  • Montesano, J., Fawaz, Z., & Bougherara, H. (2013). Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Composite Structures, 97, 76–83. https://doi.org/10.1016/j.compstruct.2012.09.046
  • Movahedi-Rad, A. V., Keller, T., & Vassilopoulos, A. P. (2018). Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue. International Journal of Fatigue, 109, 60–69. https://doi.org/10.1016/j.ijfatigue.2017.12.015
  • Naderi, M., & Khonsari, M. M. (2013). On the role of damage energy in the fatigue degradation characterization of a composite laminate. Composites Part B: Engineering, 45(1), 528–537. https://doi.org/10.1016/j.compositesb.2012.07.028
  • Padmaraj, N. H., Vijaya, K. M., & Dayananda, P. (2020). Experimental study on the tension-tension fatigue behaviour of glass/epoxy quasi-isotropic composites. Journal of King Saud University, Engineering Sciences, 32, 396–401. https://doi.org/10.1016/j.jksues.2019.04.007
  • Padmaraj, N. H., Vijaya, K. M., & Dayananda, P. (2021). Experimental investigation on fatigue behaviour of glass/epoxy quasi-isotropic laminate composites under different ageing conditions. International Journal of Fatigue, 143, 105992. https://doi.org/10.1016/j.ijfatigue.2020.105992
  • Padmaraj, N. H., Vijaya, K. M., Shreepannaga, S., Amritha, U., & Dayananda, P. (2021). Slurry erosion behaviour of carbon/epoxy quasi-isotropic laminates based on Taguchi’s optimization method. Engineering Failure Analysis, 123, 105274. https://doi.org/10.1016/j.engfailanal.2021.105274
  • Sen, L. D., Jiang, N., Zhao, C. Q., Lei, J, Yi, T (2015). Experimental study on the tension fatigue behavior and failure mechanism of 3D multi-axial warp knitted composites. Composites Part B: Engineering, 68, 126–135. https://doi.org/10.1016/j.compositesb.2014.08.042
  • Sisodia, S., Gamstedt, E. K., Edgren, F., & Varna, J. (2015). Effects of voids on quasi-static and tension fatigue behaviour of carbon-fibre composite laminates. Journal of Composite Materials, 49(17), 2137–2148. https://doi.org/10.1177/0021998314541993
  • Tessema, A., Ravindran, S., & Kidane, A. (2018). Gradual damage evolution and propagation in quasi-isotropic CFRC under quasi-static loading. Composite Structures, 185, 186–192. https://doi.org/10.1016/j.compstruct.2017.11.013
  • Vassilopoulos, A. P. (2020). The history of fiber-reinforced polymer composite laminate fatigue. International Journal of Fatigue, 134, 105512. https://doi.org/10.1016/j.ijfatigue.2020.105512
  • Vieira, P. R., Carvalho, E. M. L., Vieira, J. D., & Toledo Filho, R. D. (2018). Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials. Composites Part B: Engineering, 146, 69–75. https://doi.org/10.1016/j.compositesb.2018.03.040
  • Wang, X., Zhao, X., & Wu, Z. (2019). Fatigue degradation and life prediction of basalt fiber-reinforced polymer composites after saltwater corrosion. Materials & Design, 163, 107529. https://doi.org/10.1016/j.matdes.2018.12.001
  • Wu, F., & Yao, W. X. (2010). A fatigue damage model of composite materials. International Journal of Fatigue, 32(1), 134–138. https://doi.org/10.1016/j.ijfatigue.2009.02.027
  • Ziemian, C. W., Ziemian, R. D., & Haile, K. V. (2016). Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts. Materials & Design, 109, 209–218. https://doi.org/10.1016/j.matdes.2016.07.080
  • Zong, J., & Yao, W. (2017). Fatigue life prediction of composite structures based on online stiffness monitoring. Journal of Reinforced Plastics and Composites, 36(14), 1038–1057. https://doi.org/10.1177/0731684417701198