3,208
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Internal two-phase flow induced vibrations: A review

, , & ORCID Icon | (Reviewing editor)
Article: 2083472 | Received 27 Nov 2021, Accepted 24 May 2022, Published online: 10 Jun 2022

References

  • Abbagoni, B. M., Yeung, H., & Lao, L. (2022). Non-invasive measurement of oil-water two-phase flow in vertical pipe using ultrasonic Doppler sensor and gamma ray densitometer. Chemical Engineering Science, Part B. 248, 117218. https://doi.org/10.1016/j.ces.2021.117218
  • Abdulkadir, M., Hernandez-Perez, V., Lo, S., Lowndes, I. S., & Azzopardi, B. J. (2015). Comparison of experimental and Computational Fluid Dynamics (CFD) studies of slug flow in a vertical riser. Experimental Thermal and Fluid Science, 68, 468–29. https://doi.org/10.1016/j.expthermflusci.2015.06.004
  • Akagawa, K. (1974). Gas-liquid two-phase flow. Corona Press.
  • Al Asmi, K. R., & Seibi, A. C. (1998). Vibration induced fatigue failure of an impulse line. Engineering Failure Analysis, 4(2), 195–204. https://doi.org/10.1016/S1350-6307(98)00017-X
  • Aliseda, A., & Heindel, T. J. (2021). X-ray flow visualization in multiphase flows. Annual Review of Fluid Mechanics, 53(1), 543–567. https://doi.org/10.1146/annurev-fluid-010719-060201
  • Anagnostopolous, P. (2002). Flow-induced vibrations in engineering practice (1st ed.). WIT Press.
  • Azzopardi, B. (2006). Gas-liquid flows. Begell House.
  • Baba, Y. D., Ribeiro, J. X. F., Aliyu, A. M., Archibong-Eso, A., Abubakar, U. D., & Ehinmowo, A. B. (2020). Characteristics of horizontal gas-liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry. Scientific African, 10, e00550. https://doi.org/10.1016/j.sciaf.2020.e00550
  • Bamidele, O. E., Ahmed, W. H., & Hassan, M. (2019). Two-phase flow induced vibration of piping structure with flow restricting orifices. International Journal of Multiphase Flow, 113, 59–70. https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.002
  • Bamidele, O. E., Hassan, M., & Ahmed, W. H. (2021). Flow induced vibration of two-phase flow passing through orifices under slug pattern conditions. Journal of Fluids and Structures, 101, 103209. https://doi.org/10.1016/j.jfluidstructs.2020
  • Bamidele, O. E., Ahmed, W. H., & Hassan, M. (2022). Characterizing two-phase flow-induced vibration in piping structures with U-bends. International Journal of Multiphase Flow 151 1 104042 . . https://doi.org/10.1016/j.ijmultiphaseflow.2022.104042
  • Beguin, C., Anscutter, F., Ross, A., Pettigrew, M. J., & Mureithi, N. W. (2009). Two-phase damping and interface surface area in tubes with vertical internal flow. Journal of Fluids and Structures, 25, 178–204. https://doi.org/10.1016/j.jfluidstructs.2008.03.011
  • Belfroid, S. P. C., Cargnelutti, M. F., Schiferli, W., van Osch M. (2010, August 1–5). Forces on bends and T-joints due to multiphase flow. In Proceedings of the ASME 2010 3rd joint US-european fluids engineering Summer meeting Montreal, Canada. August, 1-5, 2010 (USA: American Society of Mechanical Engineers). 613–619. https://asmedigitalcollection.asme.org/FEDSM/proceedings-abstract/FEDSM2010/54518/613/338755
  • Belfroid, S. P. C., Nennie, E., & Lewis, M. (2016). Multiphase forces on bends—Large scale 6-inch experiments. In Proceedings of the SPE annual technical conference and exhibition, SPE-181604-MS, Dubai, UAE. 26-28 September (Society of Petroleum Engineers)SPE-181604–MS https://onepetro.org/SPEATCE/proceedings-abstract/16ATCE/2-16ATCE/D021S028R001/185057
  • Belfroid, S. P. C., Nennie, E., & Lewis, M. (2018). Influence bend radius on multiphase flow induced forces on a bend structure. In:Proceedings of the 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, Flow-Induced Vibration & Noise, July 8-11, 2018, Toronto, Ontario, Canada.
  • Bensler, H. P., Delhaye, J. M., & Favreau, C. (1987, August). Measurement of interfacial area in bubbly flows by means of an ultrasonic technique. In ANS proceedings - 1987 national heat transfer conference, 24th national heat transfer conference and exhibition Pittsburgh, USA. 9-12 August, 1987 19 (USA: American Nuclear Society)240–246 https://inis.iaea.org/search/search.aspx?orig_q=RN:19078364
  • Bertola, V. (2003). Two-phase flow measurement techniques. In V. Bertola (Ed.), Modelling and experimentation in two-phase flow. CISM courses and lectures no. 450. Springer 324 .
  • Bieberle, A., Härting, H.-U., Rabha, S., Schubert, M., & Hampel, U. (2013). Gamma-ray computed tomography for imaging of multiphase flows. Chemie Ingenieur Technik, 85(7), 1002–1011. https://doi.org/10.1002/cite.201200250
  • Blevins, R. D. (1979). Flow-induced vibration in nuclear reactors: A review. Progress in Nuclear Energy, 4(1), 25–49. https://doi.org/10.1016/0149-1970(79)90008-8
  • Blevins, R. D. (1990). Flow-induced vibration (2nd ed.). USA Van Nostrand Reinhold.
  • Breitenmoser, D., Manera, A., Prasser, H.-M., Adams, R., & Petrov, V. (2021). High-resolution high-speed void fraction measurements in helically coiled tubes using X-ray radiography. Nuclear Engineering and Design, 373, 110888. https://doi.org/10.1016/j.nucengdes.2020.110888
  • Brennen, C. E. (2005). Fundamentals of multiphase flow. Cambridge University Press.
  • Byars, M. (2001). Developments in electrical capacitance tomography [Paper Presentation]. In Keynote Review of the Second World Congress on Industrial Process Tomography Tomography, Hannover, Germany
  • Cabrera-Miranda, J. M., & Paik, J. K. (2019). Two-phase flow induced vibrations in a marine riser conveying a fluid with rectangular pulse train mass. Ocean Engineering, 174, 71–83. https://doi.org/10.1016/j.oceaneng.2019.01.044
  • Cargnelutti, M. F., Belfroid, S. P. C., & Schiferli, W. (2009, July 26–30). Two-phase flow-induced forces on bends in small scale tubes. In Proceedings of the ASME 2009 pressure vessels and piping division conference, PVP 2009, 26-30 July, 2009 (Prague, Czech Republic, USA: American Society of Mechanical Engineers).
  • Cargnelutti, M. F., Belfroid, S. P. C., & Schiferli, W. (2010). Two-phase flow-induced forces on bends in small scale tubes. ASME Journal of Pressure Vessel Technology, 132(4), 1–7. https://doi.org/10.1115/1.4001523
  • Carvalho, F. D. C. T., Figueiredo, M. D. M. F., & Serpa, A. L. (2019). Flow pattern classification in liquid-gas flows using flow-induced vibration. Experimental Thermal and Fluid Science, 112, . https://doi.org/10.1016/j.expthermflusci.2019.109950
  • Ceccio, S. L., & George, D. L. (1996). A review of electrical impedance techniques for the measurement of multiphase flows. ASME Journal of Fluids Engineering, 118(2), 391–399. https://doi.org/10.1115/1.2817391
  • Chu, I. C., Chung, H. J., & Lee, S. I. (2011). Flow-induced vibration of nuclear steam generator U-tubes in two-phase flow. Nuclear Engineering and Design, 241(5), 1508–1515. https://doi.org/10.1016/j.nucengdes.2011.01.034
  • Cong, T., Tian, W., Su, G., Qiu, S., Xie, Y., & Yao, Y. (2014). Three-dimensional study on steady thermohydraulics characteristics in secondary side of steam generator. Progress in Nuclear Energy, 70, 188–198. https://doi.org/10.1016/j.pnucene.2013.08.011
  • Crowe, C. T. (Ed.). (2006). Multiphase flow handbook. Taylor & Francis.
  • da Silva, M. J. (2008). Impedance sensors for fast multiphase flow measurement and imaging [ Doctoral dissertation]. Technische Universität Dresden.
  • Dakkach, M., Muñoz-Rujas, N., Aguilar, F., Alaoui, F. E. M., & Montero, E. A. (2018). High pressure and high temperature volumetric properties of (2-propanol + di-isopropyl ether) system. Fluid Phase Equilibria, 469, 33–39. https://doi.org/10.1016/j.fluid.2018.04.012
  • Dang, C. (2020). Imaging and fast features extraction of two-phase flows using electrical impedance tomography [Doctoral dissertation, Ecole Centrale Marseille]. Physics [physics]. Ecole Centrale Marseille, English]. NNT: 2020ECDM0006ff. https://tel.archives-ouvertes.fr/tel-03146817
  • de Mesquita, C. H., Velo, A. F., Carvalho, D. V. S., Martins, J. F. T., & Hamada, M. M. (2016). Industrial tomography using three different gamma ray. Flow Measurement and Instrumentation, 47, 1–9. http://doi.org/10.1016/j.flowmeasinst.2015.10.001
  • Dos Santos, E. N., Wrasse, A. N., Vendruscolo, T. P., Reginaldo, N. S., Torelli, G., Alves, R. F., Naidek, B. P., Morales, R. E. M., & da Silva, M. J. (2018). Sensing platform for two-phase flow studies. IEEE Access, 7, 1–9. https://doi.org/10.1109/ACCESS.2018.2887309
  • El Abd, A. (2014). Intercomparison of gamma ray scattering and transmission techniques for gas volume fraction measurements in two phase pipe flow. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 260–266. https://doi.org/10.1016/j.nima.2013.09.047
  • Falcone, G. (2009). Chapter 3 multiphase flow metering principles. G. F. H. Gioia Falcone & C. Alimonti (Eds.), Developments in petroleum science. (Vol. 54, pp. 33–45). Elsevier. https://doi.org/10.1016/S0376-7361(09)05403-X
  • Farias, P. S. C., Martins, F. J. W. A., Sampaio, L. E. B., Serfaty, R., & Azevedo, L. F. A. (2012). Liquid film characterization in horizontal, annular, two-phase, gas–liquid flow using time-resolved laser-induced fluorescence. Experiments in Fluids, 52(3), 633–645. https://doi.org/10.1007/s00348-011-1084-4
  • Fiderek, P., Kucharski, J., & Wajman, R. (2017). Fuzzy inference for two-phase gas-liquid flow type evaluation based on raw 3D ECT measurement data. Flow Measurement and Instrumentation, 54, 88–96. https://doi.org/10.1016/j.flowmeasinst.2016.12.010
  • Fishwick, R. P., Winterbottom, J. M., Parker, D. J., Fan, X., & Stitt, E. H. (2005). The use of positron emission particle tracking in the study of multiphase stirred tank reactor hydrodynamics. Canadian Journal of Chemical Engineering, 83(1), 97–103. http://dx.doi.org/10.1002/cjce.5450830117
  • Fu, Y., Valtz, A., Ahamada, S., Hu, H., & Coquelet, C. (2020). Density data for carbon dioxide (CO2) + trans1,3,3,3-tetrafluoroprop-1-ene (R-1234ze(E)) mixture at temperatures from 283.32 to 353.02K and pressures up to 10MPa. International Journal of Refrigeration, 1(20), 430–444. https://doi.org/10.1016/j.ijrefrig.2020.06.006
  • Ghajar, A. J. (2005). Non-boiling heat transfer in gas-liquid flow in pipes: A tutorial. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27(1), 46–73. https://doi.org/10.1590/S1678-58782005000100004
  • Ghendour, N., Azzi, A., Meribout, M., & Zeghloul, A. (2021). Modeling and design of a new conductance probe for gas void fraction measurement of two-phase flow through annulus. Flow Measurement and Instrumentation, 82, 102078. https://doi.org/10.1016/j.flowmeasinst.2021.102078
  • Gladden, L. F., & Sederman, A. J. (2013). Recent advances in flow MRI. Journal of Magnetic Resonance, 229, 2–11. https://doi.org/10.1016/j.jmr.2012.11.022
  • Halstensen, M., Amundsen, L., & Arvoh, B. K. (2014). Three-way PLS regression and dual energy gamma densitometry for prediction of total volume fractions and enhanced flow regime identification in multiphase flow. Flow Measurement and Instrumentation, 40, 133–141. https://doi.org/10.1016/j.flowmeasinst.2014.09.006
  • Hanus, R., Zych, M., Kusy, M., Jaszczur, M., & Petryka, L. (2018). Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Measurement and Instrumentation, 60, 17–23. https://doi.org/10.1016/j.flowmeasinst.2018.02.008
  • Hara, F. (1975). A theory on the two-phase flow induced vibrations in piping systems. In Transactions of the 3rd international conference on structural mechanics in reactor technology, paper no. D2/4.
  • Hoffmann, R., & Johnson, G. W. (2011). Measuring phase distribution in high pressure three-phase flow using gamma densitometry. Flow Measurement and Instrumentation, 22(5), 351–359. https://doi.org/10.1016/j.flowmeasinst.2011.02.005
  • Hu, B., Stewart, C., Hale, C. P., Lawrence, C. J., Hall, A. R. W., Zwiens, H., & Hewitt, G. F. (2005). Development of an X-ray computed tomography (CT) system with sparse sources: Application to three-phase pipe flow visualization. Experiments in Fluids, 39(4), 667–678. http://dx.doi.org/10.1007/s00348-005-1008-2
  • Ishii, M. (1977). One-dimensionaldrift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes (Technical Report, ANL-77-47). Argonne National Laboratory. https://doi.org/10.2172/6871478
  • Ishii, M., & Hibiki, T. (2011). Thermo-fluid dynamics of two-phase flow. Springer.
  • Jacobsen, D. S. (2016). Study of slug flow in undulated horizontal wells [ Master’s thesis]. University of Stavanger. https://uis.brage.unit.no/uis-xmlui/handle/11250/2409054
  • Johansen, G. A. (2015). Chapter 7 - Gamma-ray tomography. In M. Wang (Ed.), Woodhead Publishing series in electronic and optical materials, industrial tomography (pp. 197–222). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-118-4.00007-1
  • Kandasamy, R., Cui, F., Townsend, N., Foo, C. C., Guo, J., Shenoi, A., & Xiong, Y. (2016). A review of vibration control methods for marine offshore structures. Ocean Engineering, 127, 279–297. https://doi.org/10.1016/j.oceaneng.2016.10.001
  • Kataoka, I., & Ishii, M. (1987). Drift-flux model for large diameter pipe and new correlation for pool void fraction. International Journal of Heat and Mass Transfer, 30(9), 1927–1939. https://doi.org/10.1016/0017-9310(87)90251-1
  • Khambampati, A. K., Lee, Y.-G., Kim, K. Y., Jerng, D. W., & Kim, S. (2015). A meshless improved boundary distributed source method for two-phase flow monitoring using electrical resistance tomography. Engineering Analysis with Boundary Elements, 52, 1–15. https://doi.org/10.1016/j.enganabound.2014.11.008
  • Lee, S. I., & Chung, J. (2002). New non-linear modelling for vibration analysis of a straight pipe conveying fluid. Journal of Sound and Vibration, 254(2), 313–325. https://doi.org/10.1006/jsvi.2001.4097
  • Li, F., Cao, J., Duan, M., An C, Su J. (2016). Two-phase flow induced vibration of subsea span pipeline. In Proceedings of the 26th international ocean and polar engineering conference, ISOPE-I-16-333.
  • Lin, X., Wang, H., Chen, Z., Zhang, H., & Li, Y. (2020). Measurement of the flow rate of oil and water using microwave and venturi sensors with end-to-end dual convolutional neural network. Measurement: Sensors, 10–12, 100018. https://doi.org/10.1016/j.measen.2020.100018
  • Liu, Y., Miwa, S., Hibiki, T., Ishii, M., Kondo, Y., Morita, H., & Tanimoto, K. (2012). Experimental study of internal two-phase flow induced fluctuating force on a 90 degree elbow. Chemical Engineering Science, 76, 173–187. https://doi.org/10.1016/j.ces.2012.04.021
  • Liu, L., Shi, K., Fan, X., Tan, W., & Wang, Y. (2021). Risk and characteristics analysis of the flow-induced vibration of the dip tube in opposed multi-burner gasifier. Journal of Loss Prevention in the Process Industries, 71, 104508. https://doi.org/10.1016/j.jlp.2021.104508
  • Mallach, M., Gebhardt, P., & Musch, T. (2017). 2D microwave tomography system for imaging of multiphase flows in metal pipes. Flow Measurement and Instrumentation, Part A. 53, 80–88. https://doi.org/10.1016/j.flowmeasinst.2016.04.002
  • Miwa, S., Liu, Y., Hibiki, T., Ishii, M., Kondo, Y., Morita, H., & Tanimoto, K. (2014a). Study of unsteady gas-liquid two-phase flow induced force fluctuation (Part 1: Evaluation and modeling of two-phase flow induced force fluctuation). Transactions of Japanese Society of Mechanical Engineers, 80(809), 1–11.
  • Miwa, S., Liu, Y., Hibiki, T., Ishii, M., Kondo, Y., Morita, H., & Tanimoto, K. (2014b). Study of unsteady gas-liquid two-phase flow induced force fluctuation (Part 2: Horizontal-downward two-phase flow). Transactions of Japanese Society of Mechanical Engineers, 80(811), 1–11. https://doi.org/10.1299/transjsme.2014tep0046
  • Miwa, S., Liu, Y., Hibiki, T., Ishii, M., Kondo, Y., Morita, H., & Tanimoto, K. (2014c). Two phase flow induced vibration. In Proceedings of 22nd International Conference on Nuclear Engineering (ICONE22) (ASME) (pp. 7–11).
  • Miwa, S., Hibiki, T., & Mori, M. (2016). Analysis of flow-induced vibration due to stratified wavy two-phase flow. ASME Journal of Fluids Engineering, 138(9), 091302. https://doi.org/10.1115/1.4033371
  • Morse, R. W., Moreira, T. A., Chan, J., Dressler, K. M., Ribatski, G., Hurlburt, E. T., McCarroll, L. L., Nellis, G. F., & Berson, A. (2021). Critical heat flux and the dryout of liquid film in vertical two-phase annular flow. International Journal of Heat and Mass Transfer, 177, 121487. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121487
  • Nakamura, T., Shiraishi, T., Ishitani, Y., Watakabe, H., Sago, H., Fujii, T., Yamaguchi, A., & Konomura, M. (2005, July 17–21). Flow induced vibration of a large-diameter elbow piping based on random force measurement caused by conveying fluid (Visualization test results). In Proceedings of PVP2005, ASME pressure vessels and piping division conference (ASME).
  • Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Setayeshi, S., Zadeh, E. E., & Fatehi, A. (2016). Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. International Journal of Hydrogen Energy, 41(18), 7438–7444. https://doi.org/10.1016/j.ijhydene.2015.12.098
  • Ong, Z. C., Eng, H. C., & Noroozi, S. (2017). Non-destructive testing and assessment of a piping system with excessive vibration and recurrence crack issue: An industrial case study. Engineering Failure Analysis, 82, 280–297. https://doi.org/10.1016/j.engfailanal.2016.12.007
  • Ortiz-Vidal, L. E., & Rodriguez, O. M. H. (2011). Flow induced vibration due to gas liquid pipe flow: knowledge evolution. In 21st Brazilian congress of mechanical engineering (pp. 24–28).
  • Ortiz-Vidal, L., Mureithi, N., & Rodriguez, O. (2014). Two-phase friction factor in gas-liquid pipe flow. Revista de Engenharia Térmica, 13(2), 81–88. http://dx.doi.org/10.5380/reterm.v13i2.62101.
  • Ortiz-Vidal, L. E., Mureithi, N. W., & Rodriguez, O. M. H. (2017). Vibration response of a pipe subjected to two-phase flow: Analytical formulations and experiments. Nuclear Engineering and Design, 313, 214–224. https://doi.org/10.1016/j.nucengdes.2016.12.020
  • Paidoussis, M. P. (1970). Dynamics of tubular cantilevers conveying fluid. Journal of Mechanical Engineering Science, 12(2), 85–103. https://doi.org/10.1243/JMES_JOUR_1970_012_017_02
  • Palsson, N. S., Kaewkumsai, S., Wongpinkaew, K., & Khonraeng, W. (2017). Fatigue failure of hydrocarbon piping system. Journal of Failure Analysis and Prevention, 17(5), 838–847. https://doi.org/10.1007/s11668-017-0339-7
  • Panda, B., Sujata, M., Madan, M., Raghavendra, K., & Bhaumik, S. K. (2013). Fatigue failure of weld joint of afterburner fuel manifold of a jet engine. Engineering Failure Analysis, 30, 138–146. https://doi.org/10.1016/j.engfailanal.2013.01.022
  • Pettigrew, M. J., & Knowles, G. D. (1997). Some aspects of heat exchanger tube damping in two-phase mixture. Journal of Fluids and Structures, 11(8), 929–945. https://doi.org/10.1006/jfls.1997.0109
  • Pontaza, J. P., & Menon, R. G. (2011, June 19-24). Flow-induced vibrations of subsea jumpers due to internal multi-phase flow. In Proceedings of the ASME 2011, 30th international conference on ocean, offshore and Arctic engineering (ASME).
  • Pore, M., Ong, G. H., Boyce, C. M., Materazzi, M., Gargiuli, J., Leadbeater, T., Sederman, A. J., Dennis, J. S., Holland, D. J., Ingram, A., Lettieri, P., & Parker, D. J. (2015). A comparison of magnetic resonance, X-ray and positron emission particle tracking measurements of a single jet of gas entering a bed of particles. Chemical Engineering Science, 122, 210–218. https://doi.org/10.1016/j.ces.2014.09.029
  • Rahiman, M. H. F., Rahim, R. A., Rahim, H. A., Green, R. G., Zakaria, Z., Mohamad, E. J., & Muji, S. Z. M. (2016). An evaluation of single plane ultrasonic tomography sensor to reconstruct three-dimensional profiles in chemical bubble column. Sensors and Actuators A, 246, 18–27. https://doi.org/10.1016/j.sna.2016.04.058
  • Retsina, T., Richardson, S. M., & Wakeham, W. A. (1987). The theory of a vibrating rod densitometer. Applied Scientific Research, 43(4), 325–346. https://doi.org/10.1007/BF00540567
  • Riverin, J. L., de Langre, E., & Pettigrew, M. J. (2006). Fluctuating forces caused by internal two-phase flow on bends and tees. Journal of Sound and Vibration, 298(4–5), 1088–1098. https://doi.org/10.1016/j.jsv.2006.06.039
  • Riverin, J. L., & Pettigrew, M. J. (2007). Vibration excitation forces due to two-phase flow in piping elements. ASME Journal of Pressure Vessel Technology, 129(1), 7–13. https://doi.org/10.1115/1.2388994
  • Roshani, G. H., Feghhi, S. A. H., & Setayeshi, S. (2015). Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network. Radiation Measurements, 82, 154–162. https://doi.org/10.1016/j.radmeas.2015.07.006
  • Roshani, G. H., Nazemi, E., & Roshani, M. M. (2017). A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function. Applied Radiation and Isotopes, 123, 60–68. https://doi.org/10.1016/j.apradiso.2017.02.023
  • Rossi, L., De Fayard, R., & Kassab, S. (2018). Measurements using X‐ray attenuation vertical distribution of the void fraction for different flow regimes in a horizontal pipe. Nuclear Engineering and Design, 336, 129–140. https://doi.org/10.1016/j.nucengdes.2017.07.037
  • Salgado, W. L., Dam, R. S. D.-F., Teixeira, T. P., Conti, C. C., & Salgado, C. M. (2020). Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer. Radiation Physics and Chemistry, 168, 108549. https://doi.org/10.1016/j.radphyschem.2019.108549
  • Schlegel, J. P., Miwa, S., Chen, S., Hibiki, T., & Ishii, M. (2012). Experimental study of two-phase flow structure in large diameter pipes. Experimental Thermal and Fluid Science, 41, 12–22. https://doi.org/10.1016/j.expthermflusci.2012.01.034
  • Schulkes, R. (2011). Slug frequency revisited. In Proceedings of the 15th international conference on multiphase production technology. BHR-2011-H1.
  • Sederman, A. J. (2015). Chapter 4, Magnetic resonance imaging. In M. Wang (Ed.), Woodhead Publishing series in electronic and optical materials, industrial tomography (pp. 109–133). Woodhead Publishing.
  • Tan, C., Murai, Y., Liu, W., Tasaka, Y., Dong, F., & Takeda, Y. (2021). Ultrasonic Doppler technique for application to multiphase flows: A review. International Journal of Multiphase Flow, 103811. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103811
  • Tay, B. L., & Thorpe, R. B. (2004). Effects of liquid physical properties on the forces acting on a pipe bend in gas-liquid slug flow. Chemical Engineering Research and Design, 82(A3), 344356. https://doi.org/10.1205/026387604322870453
  • Tay, B. L., & Thorpe, R. B. (2014). Hydrodynamic forces acting on pipe bends in gas–liquid slug flow. Chemical Engineering Research and Design, 92(5), 812–825. https://doi.org/10.1016/j.cherd.2013.08.012
  • Toye, D., Marchot, P., Crine, M., & L’Homme, G. (1996). Modelling of multiphase flow in packed beds by computer-assisted x-ray tomography. Measurement Science and Technology, 7(3), 436. https://doi.org/10.1088/0957-0233/7/3/027
  • Voulgaropoulos, V., Patapas, A., Lecompte, S., Charogiannis, A., Matar, O. K., De Paepe, M., & Markides, C. N. (2021). Simultaneous laser-induced fluorescence and capacitance probe measurement of downwards annular gas-liquid flows. International Journal of Multiphase Flow, 142, 103665. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103665
  • Voulgaropoulos, V., Aguiar, G. M., Markides, C. N., & Bucci, M. (2022). Simultaneous laser-induced fluorescence, particle image velocimetry and infrared thermography for the investigation of the flow and heat transfer characteristics of nucleating vapour bubbles. International Journal of Heat and Mass Transfer, 187, 122525. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122525
  • Wallis, G. (1969). One-dimensional two-phase flow. McGraw-Hill.
  • Wang, S., & Shoji, M. (2002). Fluctuation characteristics of two-phase flow splitting at a vertical impacting T-junction. International Journal of Multiphase Flows, 28(12), 2007–2016. https://doi.org/10.1016/S0301-9322(02)00104-0
  • Wang, M. (2015a). Chapter 2 - Electrical impedance tomography. In M. Wang (Ed.), Woodhead Publishing series in electronic and optical materials, number 71, industrial tomography: Systems and applications (pp. 23–59). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-118-4.00002-2
  • Wang, M. (Ed.). (2015b). Industrial tomography: Systems and applications ( Woodhead Publishing series in electronic and optical materials, number 71).
  • Wang, L., Yang, Y. R., Li, Y. X., & Wang, Y. T. (2018a). Resonance analyses of a pipeline-riser system conveying gas–liquid two-phase flow with flow-pattern evolution. International Journal of Pressure Vessels and Piping, 161, 22–32. https://doi.org/10.1016/j.ijpvp.2018.01.005
  • Wang, L., Yang, Y. R., Li, Y. X., & Wang, Y. T. (2018b). Dynamic behaviours of horizontal gas-liquid pipes subjected to hydrodynamic slug flow: Modelling and experiments. International Journal of Pressure Vessels and Piping, 161, 50–57. https://doi.org/10.1016/j.ijpvp.2018.02.005
  • Wang, L., Yang, Y. R., Liu, C., Li, Y., & Hu, Q. (2018c). Numerical investigation of dynamic response of a pipeline-riser system caused by severe slugging flow. International Journal of Pressure Vessels and Piping, 159, 15–27. https://doi.org/10.1016/j.ijpvp.2017.11.002
  • Watson, N. J. (2015). Chapter 9 - Ultrasound tomography. In M. Wang (Ed.), Woodhead Publishing series in electronic and optical materials, industrial tomography (pp. 235–261). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-118-4.00009-5
  • Weaver, D. S., Ziada, S., Au-Yang, M. K., Chen, S. S., Paidoussis, M. P., & Pettigrew, M. J. (2000). Flow induced vibrations in power and process plant components: Progress and prospects. Journal of Pressure Vessel Technology, 122(3), 339–348. https://doi.org/10.1115/1.556190
  • Wörner, M. (2003). A compact introduction to the numerical modeling of multiphase flows (Report Forschungszentrum Karlsruhe, FZKA 6932). http://bibliothek.fzk.de/zb/berichte/FZKA6932.pdf
  • Xu, X., Liu, M., Ma, Y., & An, M. (2016). Effects of fluidized solid particles on vibration behaviors of a graphite tube evaporator with an internal vapor–liquid flow. Applied Thermal Engineering, 100, 1229–1244. https://doi.org/10.1016/j.applthermaleng.2015.12.126
  • Yan, M., Ma, B., Tian, B., Hu, G., Wu, R., & Wang, S. (2021). Design, simulation and reconstruction for a fast speed two-phase flow CT with 241Am gamma ray sources. Annals of Nuclear Energy, 151, 107970. https://doi.org/10.1016/j.anucene.2020.107970
  • Yang, K., Zhang, X., Li, M., Xiao, Q., & Wang, H. (2022). Measurement of mixing time in a gas-liquid mixing system stirred by top-blown air using ECT and image analysis. Flow Measurement and Instrumentation, 84, 102143. https://doi.org/10.1016/j.flowmeasinst.2022.102143
  • Yih, T. S., & Griffith, P. (1968). Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components (MIT Report, No. DSR 70318-58).
  • Zhang, L. X., & Huang, W. H. (2000). Nonlinear dynamical modeling of fluid–structure interaction of fluid-conveying pipes. Journal of Hydrodynamics, 15(1), 116–128.
  • Zhao, Y., Bi, Q., Yuan, Y., & Lv, H. (2016). Void fraction measurement in steam–water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions. Flow Measurement and Instrumentation, 49, 18–30. https://doi.org/10.1016/j.flowmeasinst.2016.03.002
  • Zhao, C., Wu, G., Zhang, H., & Li, Y. (2019). Measurement of water-to-liquid ratio of oil-water-gas three-phase flow using microwave time series method. Measurement, 140, 511–517. https://doi.org/10.1016/j.measurement.2019.03.054