894
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Performance evaluation of discontinuous coconut and steel fibers as reinforcement in concrete using the artificial neural network approach

, ORCID Icon, , , & | (Reviewing editor) show all
Article: 2105035 | Received 20 Oct 2021, Accepted 19 Jul 2022, Published online: 31 Jul 2022

References

  • Açikgenç, M., Ulaş, M., & Alyamaç, K. E. (2015). Using an artificial neural network to predict mix compositions of steel fiber-reinforced concrete. Arabian Journal for Science and Engineering, 40(2), 407–12. https://doi.org/10.1007/s13369-014-1549-x
  • Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Sufian, M., Abduljabbar, H. A., & Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075. https://doi.org/10.3390/ma13051075
  • Awolusi, T., Oke, O., Akinkurolere, O., & Sojobi, A. (2019). Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Studies in Construction Materials, 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212
  • Awolusi, A., Oke, O., Akinkurolere, O., Sojobi, A., & Aluko, O. (2019a). Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete. Heliyon, 5(1), e01115. https://doi.org/10.1016/j.heliyon.2018.e01115
  • Awolusi, T., Oke, O., Akinkurolere, O., Atoyebi, O., & Bureerat, S. (2019b). Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres. Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1649852
  • BoukliHacene, S., Ghomari, F., Schoefs, F., & Khelidj, A. (2014). Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks. Arabian Journal for Science and Engineering, 39(6), 4451–4460. https://doi.org/10.1007/s13369-014-1139-y
  • Centonze, G., Leone, M., & Aiello, M. (2012). Steel fibers from waste tires as reinforcement in concrete: A mechanical characterization. Construction and Building Materials, 36, 46–57. Accessed 25 September 2020. ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2012.04.088
  • Chopra, P., Sharma, R., & Kumar, M. (2015). Artificial neural networks for the prediction of compressive strength of concrete. ”International Journal of Applied Science and Engineering, 13(3), 187–204.
  • Congro, M., de Alencar Monteiro, V. M., Brandão, A. L., Dos Santos, B. F., Roehl, D., & de Andrade Silva, F. (2021). Prediction of the residual flexural strength of fiber reinforced concrete using artificial neural networks. Construction and Building Materials, 303, 124502. ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2021.124502
  • Ede, A. N., & Agbede, J. O. (2015). Use of coconut husk fiber for improved compressive and flexural strength of concrete. International Journal of Scientific and Engineering Research, 6(2), 968–974. http:/www.ijser.org
  • Ghoushchi, S. J. (2015). Optimization of transportation system based on combined model using artificial neural networks and response surface methodology. International Journal of Technical Research and Applications, 23, 69–76.
  • Gupta, T., Sharma, R., & Chaudhary, S. (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76–87. https://doi.org/10.1016/j.ijimpeng.2015.05.002
  • Hush, D., & Horne, B. G. (1993). Progress in supervised neural networks. IEEE Signal Processing Magazine, 10(1), 8–39. https://doi.org/10.1109/79.180705
  • Kang, M., & Weibin, L. (2018). Effect of the aggregate size on strength properties of recycled aggregate concrete. Advances in Materials Science and Engineering, 2018, Article ID 2428576,1–8. https://doi.org/10.1155/2018/2428576
  • Musa, M. F., & Bin Saim, A. A. (2017). The effect of aggregate size on the strength of concrete. the colloquium, 10, 9–11.
  • Muthupriya, P., Subramanian, K., & Vishnuram, B. (2011). Prediction of compressive strength and durability of high performance concrete by artificial neural networks. International Journal of Optimization in Civil Engineering, 1(1), 189–209. http://ijoce.iust.ac.ir/article-1-15-en.html
  • Nguyen, Q. H., Ly, H. B., Nguyen, T. A., Phan, V. H., Nguyen, L. K., Tran, V. Q., & Xie, T. (2021). Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams. Plos One, 16(4), e0247391. https://doi.org/10.1371/journal.pone.0247391
  • Okwuagwu, C. O. (2005). Status of coconut genetic resources research in Nigeria. In Coconut genetic resources (pp. 667–669). The pacific and oceania.
  • Oyejobi, D., Jameel, M., Sulong, N., Raji, S., & Ibrahim, H. (2020). Prediction of optimum compressive strength of light-weight concrete containing Nigerian palm kernel shells. Journal of King Saud University - Engineering Sciences, 32(5), 303–309. https://doi.org/10.1016/j.jksues.2019.04.001
  • Pilakoutas, K., Neocleous, K., & Tlemat, H. (2004, September). Reuse of tyre steel fibres as concrete reinforcement. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 157(3), 131–138. Thomas Telford Ltd. https://doi.org/10.1680/ensu.2004.157.3.131
  • Pilkington, J., Preston, C., & Gomes, R. (2014). Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Industrial Crops and Products, 58, 15–24. ISSN 0926-6690. https://doi.org/10.1016/j.indcrop.2014.03.016
  • Rahmani, T., Kiani, B., Bakhshi, M., & Shekarchizadeh, M. (2012). Application of different fibers to reduce plastic shrinkage cracking of concrete. In 7th RILEM International Conference on Cracking in Pavements (pp. 635–642). Springer, Dordrecht.
  • Sangeetha, P., & Shanmugapriya, M. (2020, December). Artificial neural network applications in fiber reinforced concrete. Journal of Physics: Conference Series, 1706(1), 012113. IOP Publishing. https://doi.org/10.1088/1742-6596/1706/1/012113
  • Torre, A., Garcia, F., Moromi, I., Espinoza, P., & Acuña, L., “Prediction of compression strength of high performance concrete using artificial neural networks”, Journal of Physics: Conference Series, vol. 582, p. 012010, 2015. https://doi.org/10.1088/1742-6596/582/1/012010.
  • Zafar, S. 19 January 2020. Energy potential of coconut biomass. BioEnergy Consult. [Retrieved: 25-September-2020] from. http://www.bioenergyconsult.com/tag/uses-of-coconut-wastes/
  • Zeyad, A. M. (2020). Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete. Journal of Materials Research and Technology, 9(3), 4147–4158. https://doi.org/10.1016/j.jmrt.2020.02.042