828
Views
1
CrossRef citations to date
0
Altmetric
PRODUCTION & MANUFACTURING

Sustainable multi-objective optimization of a machining parameter model for multi-pass turning processes

ORCID Icon, , &
Article: 2108154 | Received 04 Feb 2021, Accepted 27 Jul 2022, Published online: 28 Aug 2022

References

  • Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science & Technology, 44(6), 1888–27. https://doi.org/10.1021/es902909k
  • Ameur, T. (2021). Multi-objective particle swarm algorithm for the posterior selection of machining parameters in multi-pass turning. Journal of King Saud University - Engineering Sciences, 33(4), 259–265. https://doi.org/10.1016/j.jksues.2020.05.001
  • Arif, M., Stroud, I. A., & Akten, O. (2014). A model to determine the optimal parameters for sustainable-energy machining in a multi-pass turning operation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(6), 866–877. https://doi.org/10.1177/0954405413508945
  • Aungkulanon, P., & Luangpaiboon, P. (2016). Vertical transportation systems embedded on shuffled frog leaping algorithm for manufacturing optimisation problems in industries. SpringerPlus, 5(1), 1–25. https://doi.org/10.1186/s40064-016-2449-1
  • Bagaber, S. A., & Yusoff, A. R. (2019). Energy and cost integration for multi-objective optimisation in a sustainable turning process. Measurement: Journal of the International Measurement Confederation, 136, 795–810. https://doi.org/10.1016/j.measurement.2018.12.096
  • Banister, D. (2019). The climate crisis and transport. Transport Reviews, 39(5), 565–568. https://doi.org/10.1080/01441647.2019.1637113
  • Bouzid, W. (2005). Cutting parameter optimization to minimize production time in high speed turning. Journal of Materials Processing Technology, 161(3), 388–395. https://doi.org/10.1016/j.jmatprotec.2004.07.062
  • Chen, L. G., Li, P. L., Xia, S. J., Kong, R., & Ge, Y. L. (2022). Multi-objective optimization for membrane reactor for steam methane reforming heated by molten salt. Science China Technological Sciences, 65(6), 1396–1414. https://doi.org/10.1007/s11431-021-2003-0
  • Chen, M. C., & Tsai, D. M. (1996). A simulated annealing approach for optimization of multi-pass turning operations. International Journal of Production Research, 34(10), 2803–2825. https://doi.org/10.1080/00207549608905060
  • Cirtu, N. D., Dimitriu, R., Hartley, D., & Golder, A. A (1976). Survey of the noise levels of metal-cutting machine tools. Proceedings of the sixteenth international machine tool design and research Conference, 363–369. https://doi.org/10.1007/978-1-349-81544-9_50
  • Costa, N., & Lourenço, J. (2017). Reproducibility of nondominated solutions. Chemometrics and Intelligent Laboratory Systems, 168, 1–9. https://doi.org/10.1016/j.chemolab.2017.07.002
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
  • Du, F., He, L., Huang, H., Zhou, T., & Wu, J. (2020). Analysis and multi-objective optimization for reducing energy consumption and improving surface quality during dry machining of 304 stainless steel. Materials, 13(21), 1–26. https://doi.org/10.3390/ma13214693
  • Eslami, Y., Dassisti, M., Lezoche, M., & Panetto, H. (2019). A survey on sustainability in manufacturing organisations: Dimensions and future insights. International Journal of Production Research, 57(15–16), 5194–5214. https://doi.org/10.1080/00207543.2018.1544723
  • Faghiri, S., Aria, H. P., & Shafii, M. (2022). Multi-objective optimization of acetone droplet impingement on phase change material in direct-contact discharge method. Journal of Energy Storage, 46, 103862. https://doi.org/10.1016/j.est.2021.103862
  • Hu, L., Liu, W., Xu, K., Peng, T., Yang, H., & Tang, R. (2019). Turning part design for joint optimisation of machining and transportation energy consumption. Journal of Cleaner Production, 232, 67–78. https://doi.org/10.1016/j.jclepro.2019.05.297
  • Hwang, C.-L., Lai, Y.-J., & Liu, T.-Y. (1993). A new approach for multiple objective decision making. Computers & Operations Research, 20(8), 889–899. https://doi.org/10.1016/0305-05489390109-V
  • Jayal, A. D., Badurdeen, F., Dillon, O. W.,sJr., & Jawahir, I. S. (2010). Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144–152. https://doi.org/10.1016/j.cirpj.2010.03.006
  • Jiang, Z., Gao, D., Lu, Y., & Liu, X. (2019). Optimization of cutting parameters for trade-off among carbon emissions, surface roughness, and processing time. Chinese Journal of Mechanical Engineering, 32(1), 1–18. (English Edition). https://doi.org/10.1186/s10033-019-0408-9
  • Kallio, S., & Siroux, M. (2021). Exergy optimization of a multi-stage solar micro-cogeneration system. IET Renewable Power Generation, 1–12. https://doi.org/10.1049/rpg2.12372
  • Khalilpourazari, S., Khalilpourazary, S., Çiftçioğlu, A. Ö., & Weber, G. (2020). Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence. Journal of Intelligent Manufacturing, 321, 1621–1647. https://doi.org/10.1007/s10845-020-01648-0
  • Li, C., Tang, Y., Cui, L., & Yi, Q. (2013). Quantitative analysis of carbon emissions of CNC-based machining systems. 10th IEEE international conference on networking, sensing and control, 869–874. https://doi.org/10.1109/ICNSC.2013.6548852
  • Liu, Z. J., Sun, D. P., Lin, C. X., Zhao, X. H., & Yang, Y. (2016). Multi-objective optimization of the operating conditions in a cutting process based on low carbon emission costs. Journal of Cleaner Production, 124, 266–275. https://doi.org/10.1016/j.jclepro.2016.02.087
  • Lu, L., & Anderson-Cook, C. M. (2013). Adapting the Hypervolume Quality Indicator to Quantify Trade-offs and Search Efficiency for Multiple Criteria Decision Making Using Pareto Fronts. Qual. Reliab. Engng. Int, 29, 1117–1133. https://doi.org/10.1002/qre.1464
  • Lu, C., Gao, L., Li, X., & Chen, P. (2016). Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. Journal of Cleaner Production, 137, 1516–1531. https://doi.org/10.1016/j.jclepro.2016.07.029
  • MATLAB. (2020). Version 9.8 (R2020a). Natick, Massachusetts: The MathWorks Inc.
  • Nur, R., Kurniawan, D., Noordin, M. Y., & Izman, S. (2015). Optimizing power consumption for sustainable dry turning of treated aluminum alloy. Procedia Manufacturing, 2, 558–562. https://doi.org/10.1016/j.promfg.2015.07.096
  • Olaru, S. C., Slǎtineanu, L., Silitrǎ, M., Mihalache, A. N., & Coteatǎ, M (2017). Investigation of the sound intensity level in the case of a universal lathe. MATEC Web of Conferences, 112, 1–6, https://doi.org/10.1051/matecconf/201711201025
  • Pangestu, P., Pujiyanto, E., & Rosyidi, C. N. (2021). Multi-objective cutting parameter optimization model of multi-pass turning in CNC machines for sustainable manufacturing. Heliyon, 7(2), e06043. https://doi.org/10.1016/j.heliyon.2021.e06043
  • Pawanr, S., Garg, G. K., & Routroy, S. (2019). multi-objective optimization of machining parameters to minimize surface roughness and power consumption using TOPSIS. 7th CIRP Global Web Conference, Procedia CIRP 86, 116–120. https://doi.org/10.1016/j.procir.2020.01.03
  • Pawanr, S., Garg, G. K., & Routroy, S. (2021). Modelling of variable energy consumption for CNC machine tools. Paper Presented at the Procedia CIRP, 98, 247–251. https://doi.org/10.1016/j.procir.2021.01.038
  • Perdomo, I. L. F., Quiza, R., Haeseldonckx, D., & Rivas, M. (2020). Sustainability-focused multi-objective optimization of a turning process. International Journal of Precision Engineering and Manufacturing - Green Technology, 7(5), 1009–1018. https://doi.org/10.1007/s40684-019-00122-4
  • Phadke, M. S. (1989). Quality engineering using robust design (pp. 40–50). Prentice Hall.
  • Rao, R. V., & Kalyankar, V. D. (2013). Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm. Scientia Iranica, 20(3), 967–974. https://doi.org/10.1016/j.scient.2013.01.002
  • Schultheiss, F., Johansson, D., Bushlya, V., Zhou, J., Nilsson, K., & Ståhl, J. (2017). Comparative study on the machinability of lead-free brass. Journal of Cleaner Production, 149, 366–377. https://doi.org/10.1016/j.jclepro.2017.02.098
  • Sellami, A., Ali, M. B., & Kairouani, L. (2020). Pareto-optimization of msf-ot/tvc desalination plant using surface response methodology and genetic algorithm. Desalination and Water Treatment, 204, 10–21. https://doi.org/10.5004/dwt.2020.26229
  • Shin, S. M., Kim, Y. M., & Meilanitasari, P. (2019). A holonic-based self-learning mechanism for energy-predictive planning in machining processes. Processes, 7(10), 739. https://doi.org/10.3390/pr7100739
  • Ståhl, J. E., Schultheiss, F., & Hägglund, S. (2011). Analytical and experimental determination of the ra surface roughness during turning. Procedia Engineering, 19, 349–356. https://doi.org/10.1016/j.proeng.2011.11.124
  • Tian, C., Zhou, G., Zhang, J, & Zhang, C. (2019). Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment. Journal of Cleaner Production, 226, 706–719. https://doi.org/10.1016/j.jclepro.2019.04.113
  • Yi, Q., Li, C., Tang, Y, & Chen, X. (2015). Multi-objective parameter optimization of CNC machining for low carbon manufacturing. Journal of Cleaner Production, 95, 256–264. https://doi.org/10.1016/j.jclepro.2015.02.076
  • Zhang, H., Deng, Z., Fu, Y, Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of Cleaner Production, 148, 174–184. https://doi.org/10.1016/j.jclepro.2017.01.077
  • Zhang, Z., Tang, R., Peng, T., Tao, L., & Jia, S. (2016). A method for minimizing the energy consumption of machining system: integration of process planning and scheduling. Journal of Cleaner Production, 137, 1647–1662. https://doi.org/10.1016/j.jclepro.2016.03.101
  • Zhong, Q., Tang, R., & Peng, T. (2017). Decision rules for energy consumption minimization during material removal process in turning. Journal of Cleaner Production, 140, 1819–1827. https://doi.org/10.1016/j.jclepro.2016.07.084