933
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Bending analysis of P-FGM plates resting on nonuniform elastic foundations and subjected to thermo-mechanical loading

& | (Reviewing editor)
Article: 2108576 | Received 09 May 2022, Accepted 28 Jul 2022, Published online: 11 Aug 2022

References

  • Ahmed Hassan, A. H., & Kurgan, N. (2020). Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method. Engineering Science and Technology, an International Journal, 23(4), 788–30. https://doi.org/10.1016/j.jestch.2020.03.009
  • AlKhateeb, S. A., & Zenkour, A. M. (2014). A refined theory of plates with four unknowns for advanced plates based on elastic foundations in a hygrothermal environment. Composite Structures, 111, 240–248. https://doi.org/10.1016/j.compstruct.2013.12.033
  • Ambartsumian, S. A. (1958). On the Theory of bending plates. Izv Otd Tech Nauk AN SSSR, 5, 69–77.
  • Ansari, R., Hassani, R., Gholami, R., & Rouhi, H. (2020). Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. International Journal of Non-Linear Mechanics, 126, 103556. https://doi.org/10.1016/j.ijnonlinmec.2020.103556
  • Asemi, K., Salehi, M., & Akhlaghi, M. (2014). Three dimensional biaxial buckling analysis of functionally graded annular sector plate fully or partially supported on Winkler elastic foundation. Aerospace Science and Technology, 39, 426–441. https://doi.org/10.1016/j.ast.2014.04.011
  • Aydogdu, M. (2009). A new shear deformation theory for laminated composite plates. Composite Structures, 89(1), 94–101. https://doi.org/10.1016/j.compstruct.2008.07.008
  • Bagheri, H., Kiani, Y., & Eslami, M. R. (2018). Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers & Mathematics with Applications, 75(5), 1566–1581. https://doi.org/10.1016/j.camwa.2017.11.021
  • Bakora, A., & Tounsi, A. (2015). Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations. Structural Engineering & Mechanics, 56(1), 85–106. http://dx.doi.org/10.12989/sem.2015.56.1.085
  • Bateni, M., Kiani, Y., & Eslami, M. R. (2013). A comprehensive study on stability of FGM plates. International Journal of Mechanical Sciences, 75, 134–144. https://doi.org/10.1016/j.ijmecsci.2013.05.014
  • Behravan Rad, A. (2012). Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads. Structural Engineering and Mechanics, 44(2), 139–161. https://doi.org/10.12989/sem.2012.44.2.139
  • Beldjelili, Y., Tounsi, A., & Mahmoud, S. R. (2016). “Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four variables trigonometric plate theory. Smart Structures and Systems, 18(4), 755–786. https://doi.org/10.12989/sss.2016.18.4.755
  • Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A. A., & Mahmoud, S. R. (2017). An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel and Composite Structures, 25, 257–270. https://doi.org/10.12989/scs.2017.25.3.257
  • Bellifa, H., Benrahou, K. H., Hadji, L., Houari, M. S. A., & Tounsi, A. (2016). Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1), 265–275. https://doi.org/10.1007/s40430-015-0354-0
  • Benyamina, A. B., Bouderba, B., & Saoula, A. (2018). Bending response of composite material plates with specific properties, case of a typical FGM “Ceramic/Metal” in thermal environments. Periodica Polytechnica Civil Engineering, Paper, 11891, 1–9. https://doi.org/10.3311/PPci.11891
  • Bouderba, B. (2018). Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory. Steel and Composite Structures, 27, 311–325. https://doi.org/10.12989/scs.2018.27.3.311
  • Bouderba, B., & Benyamina, A. B. (2018). Static analysis of composite material plates “Case of a typical ceramic/metal FGM” in thermal environments. Journal of Materials and Engineering Structures, 5, 33–45. e- 2170-127X http://revue.ummto.dz›JMES
  • Bouderba, B., & Berrabah, H. M. (2020). Bending response of porous advanced composite plates under thermomechanical loads. Journal of Mechanics Based Design of Structures and Machines, an International Journal, 1–21. https://doi.org/10.1080/15397734.2020.1801464
  • Bouderba, B., Houari, M. S. A., & Tounsi, A. (2013). Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel and Composite Structures, 14(1), 85–104. https://doi.org/10.12989/scs.2013.14.1.085
  • Bouderba, B., Houari, M. S. A., Tounsi, A., & Mahmoud, S. R. (2016). Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Structural Engineering and Mechanics, 58(3), 397–422. https://doi.org/10.12989/sem.2016.58.3.397
  • Carrera, E. (2002). Temperature profile influence on layered plates response considering classical and advanced theories. AIAA Journal, 40(9), 1885–1896. https://doi.org/10.2514/2.1868
  • Dat, N. D., Khoa, N. D., Nguyen, P. D., & Duc, N. D. (2019). An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations. ZAMM- Zeitschrift fuer Angewandte Mathematik und Mechanik, 100, e201800238. https://doi.org/10.1002/zamm.201800238
  • Dong, J., Ma, X., Zhuge, Y., & Mills, J. E. (2017). Shear buckling analysis of laminated plates on tensionless elastic foundations. Steel and Composite Structures, 24, 697–709. https://doi.org/10.12989/scs.2017.24.6.697
  • Duc, N. D. (2013). Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation. J.Composite Structures, 102, 306–314. https://doi.org/10.1016/j.compstruct.2013.03.009
  • Duc, N. D. (2016a). Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory. European Journal of Mechanics - A/Solids, 58, 10–30. https://doi.org/10.1016/j.euromechsol.2016.01.004
  • Duc, N. D. (2016b). Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations. Journal of Sandwich Structures and Materials, 20, 351–378. http://dx.doi.org/10.1177/2F1099636216653266
  • Duc, N. D., Cong, P. H., Anh, V. M., Quang, V. D., Tran, P., Tuan, N. D., & Thinh, N. H. (2015b). Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. J.Composite Structures, 132, 597–609. http://dx.doi.org/10.1016/j.compstruct.2015.05.072
  • Duc, N. D., Kim, S. E., & Chan, D. Q. (2018). Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. Journal of Thermal Stresses, 41(3), 331–365. https://doi.org/10.1080/01495739.2017.1398623
  • Duc, N. D., Nguyen, P. D., & Khoa, N. D. (2017). Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments. Thin-Walled Structures, 117, 178–189. https://doi.org/10.1016/j.tws.2017.04.013
  • Duc, N. D., & Quan, T. Q. (2014). Nonlinear response of imperfect eccentrically stiffened FGM cylindrical panels on elastic foundation subjected to mechanical loads. European Journal of Mechanics – A/Solids, 46, 60–71. https://doi.org/10.1016/j.euromechsol.2014.02.005
  • Duc, N. D., Tuan, N. D., Tran, P., Dao, N. T., & Dat, N. T. (2015a). Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments. International Journal of Mechanical Sciences, 101-102, 338–348. http://dx.doi.org/10.1016/j.ijmecsci.2015.08.018
  • Gholami, R., & Ansari, R. (2017). Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates. Composite Structures, 180, 760–771. https://doi.org/10.1016/j.compstruct.2017.08.053
  • Gholami, R., & Ansari, R. (2018). Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports. The European Physical Journal Plus, 133(7), 282. http://dx.doi.org/10.1140/epjp/i2018-12103-2
  • Gholami, R., & Ansari, R. (2019). Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets. International Journal for Multiscale Computational Engineering, 17(1), 45–63. https://doi.org/10.1615/IntJMultCompEng.2019029156
  • Gholami, R., & Ansari, R. (2021). Thermal postbuckling of temperature-dependent functionally graded nanocomposite annular sector plates reinforced by carbon nanotubes. International Journal of Structural Stability and Dynamics, 21(2), 2150026. https://doi.org/10.1142/S0219455421500267
  • Gholami, Y., Ansari, R., Gholami, R., & Rouhi, H. (2019). Nonlinear bending analysis of nanoplates made of FGMs based on the most general strain gradient model and 3D elasticity theory. The European Physical Journal Plus, 134(4), 167. https://doi.org/10.1140/epjp/i2019-12501-x
  • Javani, M., Kiani, Y., & Eslami, M. R. (2019). Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Composites Part B: Engineering, 163, 371–383. https://doi.org/10.1016/j.compositesb.2018.11.018
  • Kaczkowski, Z. (1968). “Plates. Statistical Calculations”. Arkady.
  • Karama, M., Afaq, K. S., & Mistou, S. (2003). Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 40(6), 1525–1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  • Khoa, N. D., Thiem, H. T., & Duc, N. D. (2019). Nonlinear buckling and post-buckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Journal Mechanics of Advanced Materials and Structures, 26(3), 248–259. https://doi.org/10.1080/15376494.2017.1341583
  • Kiani, Y. (2016). Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers. Meccanica, 52(6), 1353–1367. https://doi.org/10.1007/s11012-016-0466-3
  • Kiani, Y. (2018). Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. Journal of Thermal Stresses, 41(7), 866–882. https://doi.org/10.1080/01495739.2018.1425645
  • Kiani, Y. (2020). NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. Journal of Thermal Stresses, 43(1), 90–108. https://doi.org/10.1080/01495739.2019.1673687
  • Kiani, Y., & Eslami, M. R. (2014a). Nonlinear thermo-inertial stability of thin circular FGM plates. Journal of the Franklin Institute, 351(2), 1057–1073. https://doi.org/10.1016/j.jfranklin.2013.09.013
  • Kiani, Y., & Eslami, M. R. (2014b). Based on the uncoupled thermoelasticity assumptions, axisymmetric thermally induced vibrations of a circular plate made of functionally graded materials (FGMs) are analyzed. Source: Journal of Thermal Stresses, 37 (24), 1495–1518. Publisher: Taylor and Francis Ltd https://doi.org/10.1080/01495739.2014.937259
  • Kiani, Y., & Eslami, M. R. (2015). thermal postbuckling of imperfect circular functionally graded material plates: Examination of Voigt, Mori–Tanaka, and Self-Consistent schemes. Journal of Pressure Vessel Technology, 137(2), 021201(11). https://doi.org/10.1115/1.4026993
  • Levinson, M. (1980). An accurate simple theory of the statics and dynamics of elastic plates. Mechanics Research Communications, 7(6), 343–350. https://doi.org/10.1016/0093-6413(80)90049-X
  • Liu, X., Liu, X., & Zhou, W. (2020). An analytical spectral stiffness method for buckling of rectangular plates on Winkler foundation subject to general boundary conditions. Applied Mathematical Modelling, 86, 36–53. https://doi.org/10.1016/j.apm.2020.05.010
  • Liua, J., Deng, X., Wang, Q., Zhong, R., Xiong, R., & Zhao, J. (2020). A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler-Pasternak foundation with elastic boundary conditions. Composite Structures, 244, 112217. https://doi.org/10.1016/j.compstruct.2020.112217
  • Mashat, D. S., Zenkour, A. M., & Radwan, A. F. (2020). A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity. European Journal of Mechanics - A/Solids, 82, 103985. https://doi.org/10.1016/j.euromechsol.2020.103985
  • Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18(1), 31–38. https://doi.org/10.1007/978-1-4613-8865-4_29
  • Mudhaffar, I. M., Tounsi, A., Chikh, A., Al-Osta, M. A., Al-Zahrani, M. M., & Al-Dulaija, S. U. (2021). Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures, 33, 2177–2189. https://doi.org/10.1016/j.istruc.2021.05.090
  • Murthy, V. V. (1981) .An improved transverse shear deformation theory for laminated anisotropic plates. NASA Technical Paper 1903.
  • Panc, V. (1975). Theories of elastic plates. Prague: Academia. https://doi.org/10.1007/978-94-010-1906-4
  • Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51(4), 745–752. https://doi.org/10.1115/1.3167719
  • Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1–3), 663–684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  • Reer, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12(2), 69–77. Corpus ID: 124143526. https://doi.org/10.1115/1.4009435
  • Reer, E. (1975). On transverse bending of plates, including the effect of transverse shear deformation. International Journal of Solids and Structures, 11, 569–573. https://doi.org/10.1016/0020-7683(75)90030-X
  • Sayyad, A. S., & Ghugal, Y. M. (2018). An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation. Advances in Aircraft and Spacecraft Science, 5, 671–689. https://doi.org/10.12989/aas.2018.5.6.671
  • Sayyad, A. S., & Ghugal, Y. M. (2019). Effects of nonlinear hygrothermomechanical loading on bending of FGM rectangular plates resting on two-parameter elastic foundation using four-unknown plate theory. Journal of Thermal Stresses, 42(2), 213–232. https://doi.org/10.1080/01495739.2018.1469962
  • Shimpi, R. P. (2002). Refined plate theory and its variants. AIAA Journal, 40(1), 137–146. https://doi.org/10.2514/2.1622
  • Shimpi, R. P., Arya, H., & Naik, N. K. (2003). A higher order displacement model for the plate analysis. Journal of Reinforced Plastics and Composites, 22(18), 1667–1688. https://doi.org/10.1177/073168403027618
  • Sobhy, M. (2020). Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory. International Journal of Applied Mechanics, 12(2050017), 30. https://doi.org/10.1142/S1758825120500179
  • Soldatos, K. P. (1992). A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 94(3–4), 195–220. http://dx.doi.org/10.1007/BF01176650
  • Thai, H. T., Choi, D. H., & Choi, D.-H. (2013). A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. International Journal of Mechanical Sciences, 73, 40–52. https://doi.org/10.1016/j.ijmecsci.2013.03.017
  • Touratier, M. (1991). An efficient standard plate theory. International Journal of Engineering Science, 29(8), 901–916. https://doi.org/10.1016/0020-7225(91)90165-Y
  • Tungikar, V. B., & Rao, K. M. (1994). Three dimensional exact solution of thermal stresses in rectangular composite laminates. Composite Structures, 27(4), 419–430. https://doi.org/10.1016/0263-8223(94)90268-2
  • Youcef, D. O., Kaci, A., Benzair, A., Bousahla, A. A., & Tounsi, A. (2018). Dynamic analysis of nanoscale beams including surface stress effects. Smart Structures and Systems, 21, 65–74. https://doi.org/10.12989/sss.2018.21.1.065
  • Zenkour, A. M. (2009). The refined sinusoidal theory for FGM plates on elastic foundations. International Journal of Mechanical Sciences, 51, 869–880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
  • Zenkour, A. M. (2010). Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Composite Structures, 93(1), 234–238. https://doi.org/10.1016/j.compstruct.2010.04.017
  • Zenkour, A. M., Allam, M. N. M., & Radwan, A. F. (2013). Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Archives of Civil and Mechanical Engineering, 14, 144–159. http://dx.doi.org/10.1016/j.acme.2013.07.008
  • Zenkour, A. M., & Hafed, Z. S. (2020). Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory. Advances in Aircraft and Spacecraft Science, 7, 115–134. https://doi.org/10.12989/aas.2020.7.2.115
  • Zidi, M., Tounsi, A., Houari, M. S. A., Bedia, E. A. A., & Beg, O. A. (2014). Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerospace Science and Technology, 34, 24–34. https://doi.org/10.1016/j.ast.2014.02.001