6,100
Views
6
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

A comprehensive review on coal fly ash and its application in the construction industry

, ORCID Icon, , , &
Article: 2114201 | Received 02 Sep 2021, Accepted 13 Aug 2022, Published online: 12 Sep 2022

References

  • ACAA. Coal Combustion Product (CCP) Production and Use Survey, 2006. www.acaa-usa.org
  • ADAA, Cement, Concrete, and Aggregates. Australian Experience with CFA in Concrete: Applications and Opportunities, ADAA, Cement, Concrete, and Aggregates Australia, 2009.
  • Adamu, M. Development of Nanosilica Modified High-Volume Coal fly ash Roller Compacted Rubbercrete for Pavement Application. Ph.D. Civil & Environmrntal Engineering, Universiti Teknologi PETRONAS, 2018.
  • Adamu, M., Mohammed, B. S., & Liew, M. S. (2018). Mechanical properties and performance of high volume coal fly ash roller compacted concrete containing crumb rubber and nano silica. Construction and Building Materials, 171, 521–26. https://doi.org/10.1016/j.conbuildmat.2018.03.138
  • Adamu, M., Mohammed, B. S., Shafiq, N., & Liew, M. S. (2020). Durability performance of high volume coal fly ash roller compacted concrete pavement containing crumb rubber and nano silica. International Journal of Pavement Engineering, 21(12), 1437–1444. https://doi.org/10.1080/10298436.2018.1547825
  • Adriano, D., Page, A., Elseewi, A., Chang, A., & Straughan, I. (1980). Utilization and disposal of coal fly ash and other coal residues in terrestrial ecosystems: A review. Journal of Environmental Quality, 9(3), 333–344. https://doi.org/10.2134/jeq1980.00472425000900030001x
  • Aggarwal, V., Gupta, S., & Sachdeva, S. (2010). Concrete durability through high volume coal fly ash concrete (HVFC) a literature review. International Journal of Engineering Science and Technology, 2(9), 4473–4477.
  • Ahmaruzzaman, M. (2010). A review on the utilization of coal fly ash. Progress in Energy and Combustion Science, 36(3), 327–363.
  • Akinyemi, S., Gitari, W. M., Thobakgale, R., Petrik, L. F., Nyakuma, B. B., Hower, J. C., Ward, C. R., Oliveira, M. L. S., & Silva, L. F. O. (2020). Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes. Environmental Geochemistry and Health, 42(9), 2771–2788. https://doi.org/10.1007/s10653-019-00511-3
  • Arulrajah, A., Mohammadinia, A., Horpibulsuk, S., & Samingthong, W. (2016). Influence of class F coal fly ash and curing temperature on strength development of coal fly ash-recycled concrete aggregate blends. Construction and Building Materials, 127, 743–750. https://doi.org/10.1016/j.conbuildmat.2016.10.049
  • ASTM C151. Standard Test Method for Autoclave Expansion of Hydraulic Cement, ASTM C151, Michigan, United States, 2018.
  • ASTM C618. (2019). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (ASTM International, Pennsylvania, United States).
  • Attarde, S., Marathe, S., & Sil, A. (2014). Utilization of coal fly ash in construction industries for environment management. International Journal of Environmental, 3(2), 117–121.
  • Bergado, D. T., Long, P. V., & Murthy, B. S. (2002). A case study of geotextile-reinforced embankment on soft ground. Geotextiles and Geomembranes, 20(6), 343–365. https://doi.org/10.1016/S0266-1144(02)00032-8
  • Bhajantri, V., Krishna, P., & Jambagi, S. (2018). A brief review on coal fly ash and its use in surface engineering. AIP Conference Proceedings, 1943(1), 020028. https://doi.org/10.1063/1.5029604
  • Bhatt, A., Priyadarshini, S., Mohanakrishnan, A. A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263
  • Bhatt, A., Priyadarshini, S., Mohanakrishnan, A., Abri, A., Sattler, M., & Tehapaphawit, S. (2019). Physical, chemical and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, 263. https://doi.org/10.1016/j.cscm.2019.eoo263
  • Brooks, R. M. (2009). Soil stabilization with coal fly ash and rice husk ash. International Journal of Research and Reviews in Applied Sciences, 1(3), 209–217. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.978&rep=rep1&type=pdf
  • Celerier, H., Jouin, J., Mathivet, V., Tessier-Doyen, N., & Rossignol, S. (2018). Composition and properties of phosphoric acid-based geopolymers. Journal of Non-Crystalline Solids, 493, 94–98. https://doi.org/10.1016/j.jnoncrysol.2018.04.044
  • Chang, E. H, Sarker, P. K, Lloyd, N, & Rangan, B. V. Shear behaviour of reinforced CFA-based geopolymer concrete beams. Presented at the 23rd Biennial Conference, Adelaide, Australia, 2007.
  • Chen, W., Shaikh, F., Li, Z., Ran, W., & Hao, H. (2021). Dynamic compressive properties of high volume coal fly ash (HVCFA) concrete with nano silica. Construction and Building Materials, 301, 124352. https://doi.org/10.1016/j.conbuildmat.2021.124352
  • Cho, H., Oh, D., & Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by coal fly ash. Journal of Hazardous Materials, 127(1–3), 187–195. https://doi.org/10.1016/j.jhazmat.2005.07.019
  • Coppola, L., Coffetti, D., & Crotti, E. (2018). Plain and ultrafine coal fly ashes mortars for environmentally friendly construction materials. Sustainability, 10(3), 874. https://doi.org/10.3390/su10030874
  • Dhindsa, H. S., Sharma, R. D., & K. R. (2016). Role of CFA in improving soil physical properties and yield of wheat (Triticum aestivum). Agricultural Science Digest, 101(36), 97. http://arccarticles.s3.amazonaws.com/arcc/Galley-Proof-D-4370.pdf
  • Dinesh, A., Anandhasuthan, S. E., Aravind, S., & Arjun, B. B. Experimental Investigation of high strength concrete using CFA and copper slag. Presented at the National Conference on Innovative Practices, Recyclable Materials and Energy Efficient Methods in Civil Engineering IPRME, 2018.
  • Draft Malawi Standard (Comesa and Sadc Harminized). Cement - Composition, specifications and conformity criteria for common cements, BS EN 197-1, London, United Kingdom, 2011.
  • Drzymala, J., Gorke, J., & Wheelock, T. (2005). A flotation collector for the separation of unburned carbon from coal fly ash. Coal Preparation, 25(2), 67–80. https://doi.org/10.1080/07349340590927404
  • Duarte, A. L., Kátia, D., Marcos, L. S. O., Elba, C. T., Ismael, L. S., & S, L. F. O. (2019). Hazardous Elements and Amorphous Nanoparticles in Historical Estuary Coal Mining Area. Geoscience Frontiers, 10(3), 927–939. https://doi.org/10.1016/j.gsf.2018.05.005
  • Dwivedi, A., & Jain, M. K. (2014). Coal fly ash–waste management and overview: A Review. Recent Research in Science and Technology, 6(1), 30–35. http://recent-science.com/
  • Feng, J., Liu, S., & Wang, Z. (2015). Effect of ultrafine CFAon the properties of high strength concrete. Journal of Thermal Analysis and Calorimetry, 121(3), 1213–1223. https://doi.org/10.1007/s10973-015-4567-3
  • Finkelman, R. B., Wolfe, A., & Hendryx, M. S. (2021). The future environmental and health impacts of coal. Energy Geoscience, 2(2), 99–112. https://doi.org/10.1016/j.engeos.2020.11.001
  • Freeman, E., Gao, Y.-M., Hurt, R., & Suuberg, E. (1997). Interactions of carbon-containing coal fly ash with commercial air-entraining admixtures for concrete. Fuel, 76(8), 761–765. https://doi.org/10.1016/S0016-2361(96)00193-7
  • Gao, Y. L., Zhou, S. Q., & Yin, J. (2006). Integrated utilization of ultra-fine coal fly ash—Fluoro gypsum for highway repair. In Key engineering materials (Vol. 302, pp. 255–262). Trans Tech Publ.
  • Gasparotto, J., Chaves, P. R., da Boit Martinello, K., Oliveira, L. F. S., Gelain, D. P., & Moreira, J. C. F. (2019). Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food and Chemical Toxicology, 133, 110766. https://doi.org/10.1016/j.fct.2019.110766
  • Glasby, T., Day, J., Genrich, R., & Aldred, J. (2015). EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport. Concrete, 2015, 1–9. https://www.geopolymer.org/wp-content/uploads/GP-AIRPORT.pdf
  • Güneyisi, E. (2010). Fresh properties of self-compacting rubberized concrete incorporated with coal fly ash. Materials and Structures, 43(8), 1037–1048. https://doi.org/10.1617/s11527-009-9564-1
  • Haider, U., Bittnar, Z., Kopecky, L., Šmilauer, V., Pokorny, J., Zaleska, M., Prošek, Z., & Hrbek, V. (2016). Determining the role of individual coal fly ash particles in influencing the variation in the overall physical morphological and chemical properties of coal fly ash. Acta Polytechnica, 56(4), 256–282. https://doi.org/10.14311/AP.2016.56.0265
  • Harris, T., & Wheelock, T. D. (2008). Process conditions for the separation of carbon from coal fly ash by froth flotation. International Journal of Coal Preparation and Utilization, 28(3), 133–152. https://doi.org/10.1080/19392690802098446
  • He, X. Y., Huang, J. X., Su, Y., Yang, J., Zheng, Z. Q., Zhang, C., Wang, X. J., & Strnadel, B. (2019). MechanicalandTransport Properties of High volume Ultrafine CFA cement composites. Key Engineering Materials, 810(143–148), 810. https://doi.org/10.4028/www.scientific.net/KEM.810.143
  • Hemalatha, T., & Ramaswamy, A. (2017). A review on coal fly ash characteristics–Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. https://doi.org/10.1016/j.jclepro.2017.01.114
  • Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2021). Long term mechanical performance of nano-engineered high volume coal fly ash concrete. Journal of Building Engineering, 43, 103168. https://doi.org/10.1016/j.jobe.2021.103168
  • Hosan, A., & Shaikh, F. U. A. (2021). Compressive strength development and durability properties of high volume slag and slag-coal fly ash blended concretes containing nano-CaCO3. Journal of Materials Research and Technology, 10, 1310–1322. https://doi.org/10.1016/j.jmrt.2021.01.001
  • Jala, S., & Goyal, D. (2006). Coal fly ash as a soil ameliorant for improving crop production—a review. Bioresource Technology, 97(9), 1136–1147. https://doi.org/10.1016/j.biortech.2004.09.004
  • Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of coal fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188–1194. https://doi.org/10.1016/j.scient.2012.07.006
  • Karaşin, A., & Doğruyol, M. (2014). An experimental study on strength and durability for utilization of coal fly ash in concrete mix. Advances in Materials Science and Engineering, 2014, 1–6. https://doi.org/10.1155/2014/417514
  • Kelechi, S. E., Adamu, M., Mohammed, A., Ibrahim, Y. E., & Obianyo, I. I. (2022). Durability performance of self compacting concrete containing crumb rubber, coal fly ash, and calcium carbide waste. Materials, 15(2), 488. https://doi.org/10.3390/ma15020488
  • Kelechi, S. E., Adamu, M., Mohammed, A., Obianyo, I. I., Ibrahim, I. I., & Alanazi, Y. E. (2022). Equivalent emmision and cost analysis of green self compacting rubberized concrete. Sustainability, 14(1), 137. https://doi.org/10.3390/su14010137
  • Kim, J.-K., Cho, H.-C., & Kim, S.-C. (2001). Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator. Journal of Environmental Science and Health, Part A, 36(9), 1709–1724. https://doi.org/10.1081/ESE-100106253
  • Korniejenko, K., Halyag, N., & Mucsi, G. K. (2009). CFA as a raw material for geopolymerisation chemical composition and physical properties. https://iopscience.iop.org/article/10.1088/1757-899X/706/1/012002
  • Korniejenko, K., Halyag, N., & Mucsi, G. (2019). Coal fly ash as a raw material for geopolymerisation-chemical composition and physical properties. IOP Conference Series: Materials Science and Engineering, 706(1), 012002. https://doi.org/10.1088/1757-899X/706/1/012002
  • Krishnaraj, L., & Ravichandran, P. (2021). Characterisation of ultra-fine coal fly ash as sustainable cementitious material for masonry construction. Ain Shams Engineering Journal, 12(1), 259–269. https://doi.org/10.1016/j.asej.2020.07.008
  • Kronbauer, M. A., Izquierdo, M., Dai, S., Waanders, F. B., Wagner, N. J., Mastalerz, M., Hower, J. C., Oliveira, M. L. S., Taffarel, S. R., Bizani, D., & Silva, L. F. O. (2013). Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Science of the Total Environment, 456, 95–103. https://doi.org/10.1016/j.scitotenv.2013.02.066
  • Kurda, R., de Brito, J., & Silvestre, J. D. (2017). Influence of recycled aggregates and high contents of coal fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 198–213. https://doi.org/10.1016/j.cemconcomp.2017.09.009
  • Lakshmi, A. D., & Vara, T. V. (2020). Durability properties of geopolymer concrete with CFA and metakaoline. International Journal of Science and Technology Research, 9(9), 1–10. https://www.ijstr.org/final-print/jan2020/Durability-Properties-Of-Geopolymer-Concrete-With-Flyash-And-Metakaolin.pdf
  • Larry, S. (2020). The future of fly ash: Dystopia or hysteria? Presentation made at Materials Science & Engineering. Michigan Technological University, USA
  • Lavanya, B., Kuriya, P. D., Suganesh, S., Indrajith, R., & Chokkalingam, R. B. (2020). ”Properties of geopolymer bricks made with flyash and GGBS”. IOP Conference Series: Materials Science and Engineering, 872(1), 012141. https://doi.org/10.1088/1757-899X/872/1/012141
  • Lee, H., Ha, H. S., Lee, C. H., Lee, Y. B., & Kim, P. J. (2006). Coal fly ash effect on improving soil properties and rice productivity in Korean paddy soils. Bioresource Technology, 97(13), 1490–1497. https://doi.org/10.1016/j.biortech.2005.06.020
  • León-Mejía, G., Machado, M. N., Okuro, R. T., Silva, L. F. O., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J. A. P., & Zin, W. A. (2018). Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Science of the Total Environment, 625, 589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283
  • Li, Y. J., Gong, Y. L., & Yin, J. (2011). Strength and durability of high performance road concrete containing ultra-fine coal fly ash. In Applied Mechanics and Materials (Vol. 99, pp. 1264–1268). Trans Tech Publ.
  • Loya, M. I. M., & Rawani, A. M. (2014). A review: Promising applications for utilization of CFA. International Journal of Advanced Technology Engineering Science, 2(7), 143–149 2348 – 7550.
  • Lütke, S. F., Marcos, L. S. O., Luis, F. O. S., Tito, R. S. C., & D, G. L. (2020). Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere, 256(127138), 127138. https://doi.org/10.1016/j.chemosphere.2020.127138
  • Madhavi, T. C., Swamy Raju, L., & Mathur, D. (2014). Durability and strength properties of high volume coal fly ash concrete. Journal of Civil Engineering Research, 4(2A), 7–11.
  • Malhotra, V. (2002). High-performance high-volume coal fly ash concrete. Concrete International, 24(7), 30–34. http://article.sapub.org/10.5923.c.jce.201401.02.html
  • Malhotra, V., & Mehta, P. (2005). High-performance, high-volume coal fly ash concrete: Materials, mixture proportions, properties, construction practice, and case histories. Supplementary Cementing Materials for Sustainable Development Inc.
  • Martinello, K., Oliveira, M. L. S., Molossi, F. A., Ramos, C. G., Teixeira, E. C., Kautzmann, R. M., & Silva, L. F. O. (2014). Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Science of the Total Environment, 470, 444–452. https://doi.org/10.1016/j.scitotenv.2013.10.007
  • Mastura, W. I., Kamarudin, H., Nizar, Abdullah, I. K., & Hussain, M. B. (2013). Effect of curing system on properties of CFA-based geopolymer brick. International Review of Mechanical Engineering, 7(1), 67–77. https://doi.org/10.4028/www.scientific.net/AMR.626.937
  • Mei, L., Lu, X., Wang, Q., Pan, Z., Ji, X., Hong, Y., Fang, C., Guo, H., & Yang, X. (2014). The experimental study of coal fly ash decarbonization on a circulating fluidized bed combustor. Applied Thermal Engineering, 63(2), 608–615. https://doi.org/10.1016/j.applthermaleng.2013.11.067
  • Mishra, D. K., Yu, J., & Leung, C. K. Y. Green concrete under normal and heat curing with coal fly ash from China and India in Proceedings of International Conference on Waste Management and Technology, 2018, vol. 13, p. 281.
  • Mohammed, B. S., & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction and Building Materials, 159, 234–251. https://doi.org/10.1016/j.conbuildmat.2017.10.098
  • Mohammed, B. S., Adamu, M., & Liew, M. S. (2018). Evaluating the effect of crumb rubber and nano silica on the properties of high volume coal fly ash roller compacted concrete pavement using non-destructive techniques. Case Studies in Construction Materials, 8, 380–391. https://doi.org/10.1016/j.cscm.2018.03.004
  • Mukilan, K., Ganesh, A. C., & Azik, A. (2019). Investigation of utilization of flyash in self compacting concrete. IOP Conference Series: Materials Science and Engineering, 561(1), 012056. https://doi.org/10.1088/1757-899X/561/1/012056
  • Muthadhi, A., & Dhivya, V. (2017). Investigating strength properties of geopolymer concrete with quarry dust. ACI Materials Journal, 114(3), 355-363. https://doi.org/10.14359/51689674
  • Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium coal fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 55, 205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
  • Neville, A. M., & Brooks, J. J. (1987). Concrete technology. Longman Scientific & Technical England.
  • Nikhil, T. R. (2019). Use of high volume CFA in concrete pavement for sustainable development. International Journal of Scientific Research, 3(1), 131-133.
  • Nordin, A. P., da Silva, J., de Souza, C. T., Niekraszewicz, L. A. B., Dias, J. F., da Boit, K., Oliveira, M. L. S., Grivicich, I., Garcia, A. L. H., Oliveira, L. F. S., & da Silva, F. R. (2018). In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. Journal of Hazardous Materials, 346, 263–272. https://doi.org/10.1016/j.jhazmat.2017.12.026
  • Nowak-Michta, A., & Kabat, B. Physical properties of post-process coal fly ash from TWTP Krakow in MATEC Web of Conferences, 2018, vol. 163: EDP Sciences, p. 03004.
  • Obla, K. H. (2008). Specifying CFA in Concrete, concrete in focus. In National ready mix concrete association (pp. 60–66).
  • Ogundiran, M. B., & Kumar, S. (2016). Synthesis of coal fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Construction and Building Materials, 125, 450–457. https://doi.org/10.1016/j.conbuildmat.2016.08.076
  • Okunade, E. A. (2010). Geotechnical properties of some coal fly ash stabilized Southwestern Nigeria lateritic soils. Modern Applied Science, 4(12), 66. https://doi.org/10.5539/mas.v4n12p66
  • Olarewaju, A. J. (2016). Engineering properties of concrete mixed with varying degrees of coal fly ash. American Journal of Engineering Research, 5. https://www.ajer.org/papers/v5(09)/V050901460149.pdf
  • Oliveira, M. L., Marostega, F., Taffarel, S. R., Saikia, B. K., Waanders, F. B., DaBoit, K., Baruah, B. P., & Silva, L. F. O. (2014). Nano-mineralogical investigation of coal and coal fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards. Science of the Total Environment, 468, 1128–1137. https://doi.org/10.1016/j.scitotenv.2013.09.040
  • Panda, S. S., & Jena, B. (2021). Yield behaviour of two-way reinforced concrete flyash brick slab. In eds. Bibhuti Bhusan Das, Salim Barbhuiya, Rishi Gupta, Purnachandra Saha. Recent Developments in Sustainable Infrastructure (pp. 405–414). Springer.
  • Panda, S., Panigrahi, R., & Narshimam, M. (2019). A review on utilization of alkali activated flyash and ggbfs as green concrete. Adalya Journal, 8(7), 91–96. https://adalyajournal.com/gallery/12-july-1624.pdf
  • Pandey, A., Tiwari, D., Yadav, D. K., Mishra, R. K., Deshpande, V. P., & Shinde, A. (2018). Stabilization of soil under foundation and pavements using coal fly ash. AMBIENT SCIENCE, 5(2, Sp1 & Sp2). 8-11. https://doi.org/10.21276/ambi.2018.05.sp2.ta01
  • Papadakis, V., & Tsimas, S. (2005). Greek supplementary cementing materials and their incorporation in concrete. Cement and Concrete Composites, 27(2), 223–230. https://doi.org/10.1016/j.cemconcomp.2004.02.011
  • Parikshith, M., & Sekhar, D. C. (2019). Feasibility of flyash based geopolymer for soil stabilization. Int J Innov Technol Explor Eng, 9(1), 4348-4351.
  • Patil, A., Banapurmath, N., Hunashyal, A. M., & Meti, V. K. V. (2020). Flyash and carbon fibers reinforced aluminum-based matrix composite for structural applications. IOP Conference Series: Materials Science and Engineering, 872(1), 012160. https://doi.org/10.1088/1757-899X/872/1/012160
  • Quispe, D., Pérez-López, R., Silva, L. F., & Nieto, J. M. (2012). Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil. Fuel, 94, 495–503. https://doi.org/10.1016/j.fuel.2011.09.034
  • Rafiza, A.R, Bakri, A. M., Kamarudin, H., Nizar, I.K., Hardjito, D., & Zarina, Y. (2014). Evaluation of pelletized artificial geopolymer aggregate manufactured from volcano ash Australian Journal of Basic and Applied Sciences 7 5 15- 20 http://repository.petra.ac.id/id/eprint/16189 .
  • Rahacek, S., Hunka, P., Citek, D., & Kolisko, J. (2020). Experimental determination of ammonia in CFA for ready mix concrete. AIP Conference Proceedings, 2210(1), 020–026. https://doi.org/10.1063/5.0000478
  • Revathi, J., Rajamane, S., & A, D. (2015). Studies on Physio Chemical Properties of CFA for their Effective Alkali Activation. SOJ Material Science Engineering, 3(3), 1–6. https://doi.org/10.15226/sojmse.2015.00129
  • Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M. A., & Silva, L. F. (2013). Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron-to nano-particles in anthracite coal fly ash. Science of the Total Environment, 452, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010
  • Saha, A. K. (2018). Effect of class F coal fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. https://doi.org/10.1016/j.serj.2017.09.001
  • Saikia, B. K., Ward, C. R., Oliveira, M. L. S., Hower, J. C., De Leao, F., Johnston, M. N., O’Bryan, A., Sharma, A., Baruah, B. P., & Silva, L. F. O. (2015). Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived coal fly ashes from Assam (North-east India): A multi-CFAceted analytical approach. International Journal of Coal Geology, 137, 19–37. https://doi.org/10.1016/j.coal.2014.11.002
  • Sambo, A. (2008). Matching electricity supply with demand in Nigeria. International Association of Energy Economics, 4, 32–36. https://www.iaee.org/documents/newsletterarticles/408sambo.pdf
  • Sasui, S., Kim, G., Nam, J., Koyama, T., & Chansomsak, S. (2020). Strength and microstructure of class-C coal fly ash and GGBS blend geopolymer activated in NaOH & NaOH+ Na2SiO3. Materials, 13(1), 59.
  • Sharma, V., & Akhai, S. (2019). Trends in utilization of coal fly ash in India: A review. Journal of Engineering Design and Analysis, 2(1), 12–16. https://adrjournalshouse.com/index.php/engineering-design-analysis/article/view/499
  • Silva, L. F. O., Hower, J. C., Dotto, G. L., Oliveira, M. L. S., & Pinto, D. (2021). Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes. FUEL, 285, 119–162. https://doi.org/10.1016/j.fuel.2020.119162
  • Silva, L., Sampaio, C., Guedes, A., De Vallejuelo, S. F.-O., & Madariaga, J. (2012). Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation. Fuel, 94, 52–63. https://doi.org/10.1016/j.fuel.2011.11.007
  • Singh, R., Singh, L., & Singh, S. V. (2015). Beneficiation of iron and aluminium oxides from coal fly ash at lab scale. International Journal of Mineral Processing, 145, 32–37. https://doi.org/10.1016/j.minpro.2015.08.001
  • Srishadurya, P., & Selvaprasanth, P. (2019). Experimental study on properties of high volume CFA concrete. International Research Journal of Engineering and Technology (IRJET), 6(2), 12–23.
  • Sumathi, A., Mohan, R. S., Shankari, G. S., & S. R. (2014). Effect of CFA on fresh properties of concrete. International Journal of Applied Engineering Research, 9(1), 69–82.
  • Sung, H., Yoo, K., & Lee, S.-H. (2016). The removal of unburned carbon from coal fly ash by kerosene extraction. Geosystem Engineering, 19(2), 96–99. https://doi.org/10.1080/12269328.2015.1096841
  • Surabhi, S. (2017). Coal fly ash in India: Generation vis-a-vis utilization and global perspective. Int J Appl Chem, 13(1), 29–52.
  • Tajunnisa, Y., Sugimoto, M., Sato, T., Ekaputri, J. J., & Shigeishi, M. (2016). Characterization of low calcium coal fly ash for geopolymer paste 16th International Conference and Exhibition on Structural Faults and Repair 17 - 19 May, 2016 16 (Engineering Technics Press, Edinburgh) Radison Blu, Edinburgh, United Kingdom.
  • Temuujin, J., van Riessen, A., & MacKenzie, K. (2010). Preparation and characterisation of coal fly ash based geopolymer mortars. Construction and Building Materials, 24(10), 1906–1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012
  • Titarmare, A. P., Deotale, S. R., & Bachale, S. B. (2012). Experimental study report on use of CFA ready mixed concrete. International Journal of Scientific and Engineering Research, 3(6), 2229–2238.
  • Tittarelli, F., Mobili, A., & Bellezze, T. (2017). The effect of coal fly ash on the corrosion behaviour of galvanised steel rebars in concrete. IOP Conference Series: Materials Science and Engineering, 225(1), 012107. https://doi.org/10.1088/1757-899X/225/1/012107
  • Vengata, G. K. High volume Coal fly ash concrete for pavements. M.E. Dissertation. Master of Engineering, Department of Civil Engineering, Anna University, 2009.
  • Venkat, K. V., Bharu, P., Tulasi, R. D., & Sagar, D. (2019). ”Experimental Investigation on stabilization of soil using CFA, GGBS and coir fibers”. Bachelor of Science, College of engineering and technology, CMR University.
  • Wang, M. W., Yang, J., Ma, H. W., Shen, J., Li, J. H., & Guo, F. (2012). Extraction of aluminum hydroxide from coal fly ash by pre-desilication and calcination methods. In Advanced Materials Research (Vol. 396, pp. 706–710). Trans Tech Publ.
  • Wardhono, A. (2018). Comparison study of class F and class C coal fly ashes as cement replacement material on strength development of non-cement mortar. IOP Conference Series: Materials Science and Engineering, 288(1), 012019. https://doi.org/10.1088/1757-899X/288/1/012019
  • Wee, J.-H. (2013). A review on carbon dioxide capture and storage technology using coal fly ash. Applied Energy, 106, 143–151. https://doi.org/10.1016/j.apenergy.2013.01.062
  • Wilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M. L. S., Cutruneo, C. M. N. L., Taffarel, S., Silva, L. F. O., Hopps, S. D., Thomas, G. A., & Hower, J. C. (2015). Observations and assessment of coal fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and sub-bituminous coals: Environmental processes recorded at the macro-and nanometer scale. Energy & Fuels, 29(11), 7168–7177. https://doi.org/10.1021/acs.energyfuels.5b02033
  • Zabihi-Samani, M., Mokhtari, S. P., & Raji, F. (2018). Effects of coal fly ash on mechanical properties of concrete. Journal of Applied Engineering Sciences, 8(2), 35–40. https://doi.org/10.2478/jaes-2018-0016
  • Zahari, N, Mohamad D, Arenandan V, Beddu S, Sadon SN, Syamsir A, Kamal NM, Zainoodin MM, Nadhirah A. (2018). Study on prediction coal fly ash generation using statistical method. AIP Conference Proceedings, 2031(1), 020038. https://doi.org/10.1063/1.5066994
  • Zhang, X. (2014). Management of coal combustion wastes CCC/231 (International Energy Agency Coal Centre), 2–68 ISBN 978-92-9029-551-8.
  • Zielinski, R. A., & Finkelman, R. B. (1997). Radioactive elements in coal and coal fly ash: Abundance, forms, and environmental significance. U.S. Geological Survey 163, 2327–6932. https://doi.org/10.3133/fs16397.