574
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Binary adsorption studies of Cr(VI) and Cu(II) ions from synthetic wastewater using carbon from Feoniculum vulgare (fennel seeds)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2119530 | Received 28 Aug 2021, Accepted 28 Aug 2022, Published online: 08 Sep 2022

References

  • Abshirini, Y., Esmaeili, H., & Foroutan, R. (2019). Enhancement removal of Cr (VI) ion using magnetically modified MgO nanoparticles. Materials Research Express, 6(125513), 1–21. https://doi.org/10.1088/2053-1591/ab56ea
  • Ahmad, A., Khan, N., Giri, B. S., Chowdhary, P., & Chaturvedi, P. (2020). Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresource Technology, 306, 1–5. https://doi.org/10.1016/j.biortech.2020.123202
  • Ali, I., Khan, T. A., & Asim, M. (2012). Removal of arsenate from groundwater by electrocoagulation method. Environmental Science and Pollution Research, 19(5), 1668–1676. https://doi.org/10.1007/s11356-011-0681-3
  • Amin, M. T., Alazba, A. A., & Shafiq, M. (2018). Removal of copper and lead using bananabiochar in batch adsorption systems: isotherms and kinetic studies. Arabian Journal of Science and Engineering, 4(11), 5711–5722. https://doi.org/10.1007/s13369-017-2934-z
  • Arroub, H., Hsissou, R., & Elharfi, A. (2020). Investigation of modified chitosan as potential polyelectrolyte polymer and eco-friendly for the treatment of galvanization wastewater using novel hybrid process. Results in Chemistry, 2(100047), 1–7. https://doi.org/10.1016/j.rechem.2020.100047
  • Asim, N., Amin, M. H., Samsudin, N. A., Badiei, M., Razali, H., Akhtaruzzaman, M., Amin, N., & Sopian, K. (2020). Development of effective and sustainable adsorbent biomaterial from an agricultural waste material: Cu(II) removal. Materials Chemistry and Physics, 249, 1–11. https://doi.org/10.1016/j.matchemphys.2020.123128
  • Ayub, S., Mohammadi, A. A., Yousefi, M., & Changani, F. (2018). Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalination and Water Treatment, 142, 293–299. https://doi.org/10.5004/dwt.2019.23455
  • Barbooti, M., Abid, B. A., & Al-Shuwaiki, N. M. (2011). Removal of heavy metals using chemicals precipitation. Engineering and Technology Journal, 29(3), 595–612. https://www.researchgate.net/publication/265490687
  • Birhanu, Y., & Leta, S. (2020). Multivariate optimization of Pb2+ adsorption onto Ethiopian low-cost odaracha soil using response surface methodology. Molecules, 26(21), 6477. https://doi.org/10.3390/molecules26216477
  • Birhanu, Y., Leta, S., & Adam, G. (2020). Removal of chromium from synthetic wastewater by adsorption onto Ethiopian low‑cost Odaracha adsorbent. Applied Water Science, 10(227), 1–11. https://doi.org/10.1007/s13201-020-01310-3
  • Chen, H., Dou, J., & Xu, H. (2017). Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption. Applied Surface Science, 425, 728–735. http://dx.doi.org/10.1016/j.apsusc.2017.07.053
  • Enniya, I., Rghioui, L., & Jourania, A. (2018). Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chemistry and Pharmacy, 7, 9–16. https://doi.org/10.1016/j.scp.2017.11.003
  • Esmaeili, H., & Tamjidi, S. (2020). Ultrasonic-assisted synthesis of natural clay/Fe3O4/graphene oxide for enhance removal of Cr (VI) from aqueous media. Environmental Science and Pollution Research, 27(25), 31652–31664. https://doi.org/10.1007/s11356-020-09448-y
  • Es-sahbany, H., El Hachimi, M. L., Hsissou, R., Belfaquir, M., Es-sahbany, K., Nkhili, S., Loutfi, M., & Elyoubi, M. S. (2021). Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima –Morocco region) Materials today: Proceedings. 45. 7299–7305.https://doi.org/10.1016/j.matpr.2020.12.1102
  • Es-sahbany, H., Hsissou, R., El Hachimi, M. L., Allaoui, K., Nkhili, S, M., & Elyoubi, M. S. (2021). Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Materials Today: Proceedings. 45. 7290–7278. https://doi.org/10.1016/j.matpr.2020.12.1100
  • Foroutan, R., Peighambardous, S. J., Hosseini, S. S., Akbari, A., & Ramavandi, B. (2021). Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. Journal of Hazardous Materials, 413, 1–13. https://doi.org/10.1016/j.jhazmat.2021.125428
  • Fotsing, P. N., Woumfo, E. D., Mezghich, S., Mignot, M., Mofaddel, N., Derf, F. L., & Vieillard, J. (2020). Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr(VI) removal. Royal Society of Chemistry, 10, 20009–20019. https://doi.org/10.1039/d0ra03027a
  • Hoslett, J., Ghazal, H., Ahmad, D., & Jouhara, H. (2019). Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of the Total Environment, 673, 777–789. https://doi.org/10.1016/j.scitotenv.2019.04.085
  • Inthapanya, X., Wu, X., Han, Z., Zeng, G., Wu, M., & Yang, C. (2019). Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics. Environmental Science and Pollution Research, 26(6), 5944–5954. https://doi.org/10.1007/s11356-018-3980-0
  • Islam, M. A., Angove, M. J., & Morton, D. W. (2019). Recent innovative search chromium (VI) adsorption mechanism. Environmental Nanotechnology, Monitoring & Management, 12, 1–21. https://doi.org/10.1016/j.enmm.2019.100267
  • Januszewicz, K., Kazimierski, P., Klein, M., Kardas, D., & Luczak, J. (2020). Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials, 13(2047), 1–13. https://doi.org/10.3390/ma13092047
  • Kadiri, L., Ouass, A., Hsisou, R., Safi, Z., Wazzan, N., Essaadaoui, Y., Lebkiri, I., Khattabi, O. E., Rifi, E. H., & Lebkiri, A. (2021). Adsorption properties of coriander seeds: Spectroscopic kinetic thermodynamic and computational approaches. Journal of Molecular Liquids, 343(116971), 1–12. https://doi.org/10.1016/j.molliq.2021.116971
  • Katiyar, R., Patel, A. K., Nguyen, T.-B., Singhania, R. R., Chen, C.-W., & Dong, C. D. (2021). Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresource Technology, 328, 1–7. https://doi.org/10.1016/j.biortech.2021.124829
  • Koohzad, E., Jafari, D., & Esmaeili, H. (2019). Adsorption of lead and arsenic ions from aqueous solution by activated carbon prepared from tamarix leaves. Chemistry Select, 4, 12356–12367. https://doi.org/10.1002/slct.201903167
  • Lee, S.-Y., & Choi, H.-J. (2018). Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. Journal of Environmental Management, 209, 382–392. https://doi.org/10.1016/j.jenvman.2017.12.080
  • Li, L., Liu, F., Duan, H., Wang, X., Li, J., Wang, Y., & Luo, C. (2016). The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids and Surfaces B: Biointerfaces, 141, 253–259. https://doi.org/10.1016/j.colsurfb.2015.06.023
  • Liu, G., Lin, S., Pile, L. S., Fang, Z., & Wang, G. G. (2018). Effect of potassium permanganate and pyrolysis temperature on the biochar produced from rice straw and suitability of biochars for heavy metal (Cd & Pb) mobilization in paper sludge. Fresenius Environmental Bulletin, 27(12A), 9008–9018. https://www.fs.usda.gov/nrs/pubs/jrnl/2018/nrs_2018_liu-g_001.pdf
  • Liu, X., Xu, X., Dong, X., & Park, J. (2020). Competitive adsorption of heavy metal ions from aqueous solutions onto activated carbon and agricultural waste materials. Pol. J. Environ. Stud, 29(1), 749–761. https://doi.org/10.15244/pjoes/104455
  • Li, N., Yin, M., Tsang, D. C. W., Yang, S., Liu, J., Li, X., Song, G., & Wang, J. (2019). Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. Science of the Total Environment, 697, 1–9. https://doi.org/10.1016/j.scitotenv.2019.134115
  • Li, Y., Zhang, Y., Zhang, Y., Wang, G., Li, S., Han, R., & W, W. (2018). Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media. Journal of Molecular Liquids, 263, 53–63. https://doi.org/10.1016/j.molliq.2018.04.132
  • Mahmud, H. N. M. E., Haq, A. K. O., & Yahya, R. B. (2015). Removal of heavy metal ions from wastewater aqueous solution by polypyrrole-based adsorbent: A review. Royal Society of, Chemistry, 6, 14778–14791. https://doi.org/10.1039/C5RA24358K
  • Nimibofa, A., Tobin, E. A., Shooto, N. D., Donbebe, W., & Dikio, E. D. (2017). Equilibrium, kinetic and thermodynamic studies of the uptake of copper by layered double hydroxide. Hemijska Industrija, 17(5), 429–437. https://doi.org/10.2298/HEMIND150608005N
  • Nkutha, S. C., Naidoo, E. B., & Shooto, N. D. (2021). Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. South African Journal of Chemical Engineering, 36, 43–57. https://doi.org/10.1016/j.sajce.2021.01.001
  • Nkutha, S. C., Shooto, N. D., & Naidoo, E. B. (2020). Adsorption studies of methylene blue and lead ions from aqueous solution by using mesoporous coral limestones. South African Journal of Chemical Engineering, 34, 153–157. https://doi.org/10.1016/j.sajce.2020.08.003
  • Oladipo, A. A., Ahaka, E. O., & Gazi, M. (2019). High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environmental Science and Pollution Research, 26(31), 31887–31899. https://doi.org/10.1007/s11356-019-06321-5
  • Rahman, A., Rahim, A., Mohsim, H. M., Thanabalan, M., Rabat, N. E., Saman, N., Mat, H., & Johari, K. (2020). Effective carbonaceous desiccated coconut waste adsorbent for application of heavy metal uptakes by adsorption: Equilibrium, kinetic and thermodynamics analysis. Biomass and Bioenergy, 142, 1–12. https://doi.org/10.1016/j.biombioe.2020.105805
  • Sfakiankis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: A review. Environment Research, 137, 246–255. https://doi.org/10.1016/j.envres.2014.12.014
  • Sheikh, Z., Amin, M., Khan, N., Khan, M. N., Sami, S. K., Khan, S. B., Hafeez, I., Khan, S. A. B. E. M., & Cheng, C. K. (2021). Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 279(130545), 1–10. https://doi.org/10.1016/j.chemosphere.2021.130545
  • Shooto, N. D. (2020). Removal of toxic hexavalent chromium (Cr(VI)) and divalent lead (Pb(II)) ions from aqueous solution by modified rhizomes of Acorus calamus. Surfaces and Interfaces, 20, 1–9. https://doi.org/10.1016/j.surfin.2020.100624
  • Shooto, N. D., Naidoo, E. B., & Maubane, M. (2019). Sorption studies of toxic cations on ginger root adsorbent. Journal of Industrial and Engineering Chemistry, 76, 133–140. https://doi.org/10.1016/j.jiec.2019.02.027
  • Shooto, N. D., Thabede, M. P., & Naidoo, E. B. (2019). Simultaneous adsorptive study of toxic metal ions in quaternary system from aqueous solution using low cost black cumin seeds (Nigella sativa) adsorbents. South African Journal of Chemical Engineering, 30, 15–27.
  • Takmil, F., Esmaeili, H., Mousavi, S. M., & Hashemi, S. A. (2020). Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Advanced Powder Technology, 31(8), 3236–3245. https://doi.org/10.1016/j.apt.2020.06.015
  • Thabede, M. P., Shooto, N. D., Xaba, T., & Naidoo, E. B. (2020). Adsorption studies of toxic cadmium(II) and chromium(VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds. Journal of Environmental Chemical Engineering, 8(4), 1–12. https://doi.org/10.1016/j.jece.2020.104045
  • Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process Engineering, 33, 1–17. https://doi.org/10.1016/j.jwpe.2019.101038
  • Wan, Z., Li, M., Zhang, Q., Fan, Z., & Verpoot, F. (2018). Concurrent reduction-adsorption of chromium using m-phenylenediamine-modified magnetic chitosan: Kinetics, isotherm, and mechanism. Environmental Science and Pollution Research, 25(18), 17830–17841. https://doi.org/10.1007/s11356-018-1941-2
  • Wei, L., Zietzschmann, F., Rietveld, L. C., & van Halem, D. (2020). Fluoride removal by Ca-Al-CO3 layered double hydroxides at environmentally-relevant concentrations. Chemosphere, 243(125307), 1–8. https://doi.org/10.1016/j.chemosphere.2019.125307
  • Yang, L., Wei, Z., Zhong, W., Cui, J., & Wei, W. (2016). Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490, 9–21. https://doi.org/10.1016/j.colsurfa.2015.11.039
  • Yusuff, A. S. (2019). Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: Equilibrium, kinetic and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26(1), 89–102. https://doi.org/10.1080/25765299.2019.1567656
  • Zewail, T. M., & Yousef, N. S. (2015). Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Engineering Journal, 54(1), 83–90. https://doi.org/10.1016/j.aej.2014.11.008