1,582
Views
0
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Effects of drying process parameters on the quality attributes of hot air dried okra and its statistical optimization

, , , , , , ORCID Icon & show all
Article: 2122193 | Received 05 Apr 2022, Accepted 05 Sep 2022, Published online: 27 Sep 2022

References

  • Abdel-Hameed, S. M., Abdel-Raouf, R. M., & Abdel-Aleem, W. M. (2017). Drying kinetics, quality attributes and moisture sorption isotherms during storage of Roselle (Hibiscus sabdariffa) dried under solar drying conditions. Egyptian Journal of Food Science, 45, 43–21. https://ejfs.journals.ekb.eg/article_20387_dcfac5ce431b056a60ad76bd8d84b64b.pdf
  • Agarry, S. E., Osuolale, F. N., Agbede, O. O., Ajani, A. O., Afolabi, T. J., Ogunleye, O. O., Ajuebor, F., & Owabor, C. N. (2021). Transport phenomena, thermodynamic analyses, and mathematical modelling of okra convective cabinet-tray drying at different drying conditions. Engineering and Applied Science Research, 48(5), 637–656. https://ph01.tci-thaijo.org/index.php/easr/article/view/243546
  • Agnihotri, V., Jantwal, A., & Joshi, R. (2017). Determination of effective moisture diffusivity, energy consumption and active ingredient concentration variation in Inula racemosa, rhizomes during drying. Industrial Crop and Products, 106, 40–47. https://doi.org/10.1016/j.indcrop.2016.09.068
  • Ajayeoba, A. O., Samson, O. F., & Olawale, W. A. (2014). Design and development of a domestic biscuit cabinet tray dryer. International Journal of Engineering Research and Applications, 4(3), 13–20.
  • Alp, D., & Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: A review. European Food Research and Technology, 247(6), 1333–1343. https://doi.org/10.1007/s00217-021-03731-z
  • AOAC (Association of Official Analytical Chemists). (2019). Official Methods of Analysis (21st ed.). AOAC International.
  • Aworanti, O. A., Agarry, S. E., & Ogunleye, O. O. (2017). Biomethanization of cattle manure, pig manure and poultry manure mixture in co-digestion with waste of pineapple fruit and content of chicken-gizzard- Part II: Optimization of process variables. The Open Biotechnology Journal, 11(1), 54–71. https://doi.org/10.2174/1874070701711010054
  • Ayegba, C., Makinde, O., Obigwa, P., & Orijajogun, J. (2017). Effect of drying temperature on nutritional content of moringa oleifera leave. World Journal of Food Science and Technology, 1(3), 93–96.
  • Babanovska-Milenkovska, F., Karakasova, L., Petanovska-Ilievska, B., Manasievska-Simic, S., Miskoska-Milevska, E., Velkoska-Markovska, L., & Jankulovska, M. (2016). Change in the quality properties of two different pepper varieties in fresh and dried condition. Journal of International Science Publication of Agriculture & Food, 4, 250–259.
  • Baltacıoğlu, C. (2017). Optimization of drying and osmotic dehydration of asparagus officinalis in microwave and conventional hot air oven using response surface methodology. Carpathian Journal of Food Science and Technology, 9(3), 5–16.
  • Bhong, M. G., & Kale, V. M. (2020). Drying mechanism of Indian dark red onion slices at high velocity. AIMS Agriculture and Food, 5(2), 245–261. https://doi.org/10.3934/agrfood.2020.2.245
  • Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., & Uyttendaele, M. (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Review of Food Science and Food Safety, 15(6), 1056–1066. https://doi.org/10.1111/1541-4337.12224
  • Correia, P. M. R., Guiné, R., Correia, A. C., Gonçalves, F., Brito, M. F. S., & Ribeiro, J. R. P. (2017). Physical, chemical and sensory properties of kiwi as influenced by drying conditions. Agricultural Engineering International: CIGR Journal, 19(3), 203–212.
  • Correia, A. F. K., Loro, A. C., Zanatta, S., Spoto, M. H. F., & Vieira, T. M. F. S. (2015). Effect of temperature, time, and material thickness on the dehydration process of tomato. International Journal of Food Science, 970724, 7.
  • Dantas, T. L., Alonso Buriti, F. C., & Florentino, E. R. (2021). Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants, 10(8), 1683. https://doi.org/10.3390/plants10081683
  • Das, A. K., Sultana, Z., Kabir, A., & Kabir, S. (2018). Effect of washing on reducing bacterial loads in common vegetables sold in Dhaka City. Bangladesh Journal of Microbiology, 35(2), 96–101. https://doi.org/10.3329/bjm.v35i2.42637
  • Dauda, A., Abiodun, O., Salami, T., & Akintayo, O. (2019). Chemical and microbiological evaluation of dried tomato slices for Nigerian system. Global Journal of Nutrition and Food Science, 1(5), 1–4. https://doi.org/10.33552/GJNFS.2019.01.000521
  • Dey, A., Singhal, S., Rasane, P., Kaur, S., Kaur, N., & Singh, J. (2019). Comparative kinetic analysis of convective and vacuum dried Opuntia ficus-indica (L.) Mill. cladodes. Research in Agricultural Engineering, 65(No. 1), 1–6. https://doi.org/10.17221/18/2018-RAE
  • Dimitrios, A. T., Alenxandros, P. V., Achilleas, V. B., Andronikos, E. F., & Dionissio, P. M. (2012). Airflow patterns in a laboratory batch-type, tray air dryer. Proceedings of 5th International Conference from Scientific Computing to Computational Engineering, Greece.
  • Dixit, A., Upadhyay, A., & Mishra, A. (2018). Process optimization for the development of low fat fried Indian traditional snack using response surface approach. Carpathian Journal of Food Science and Technology, 10(3), 57–71.
  • Dos Santos, F. S., de Figueirêdo, R. M. F., Queiroz, A. J. D. M., De lima, A. R. C., & de Lima, T. L. B. (2021). The effect of temperature on the okra drying process: Kinetic study and physical properties of powders. Australian Journal of Crop Science, 15(5), 649–660. https://doi.org/10.21475/ajcs.21.15.05.p2919
  • Duarte, C., Sousa, P., Rocha, S., Pinheiro, R., & Vaz Velho, M. (2019). The effect of different drying processes on physicochemical characteristics and antioxidant activity of brassica spp. cultivars from Northern Atlantic Portugal. Chemical Engineering Transactions, 75, 421–426. https://doi.org/10.3303/CET1975071
  • Famurewa, J. A., & Olumofin, K. M. (2015). Drying kinetics and influence on the chemical characteristics of dehydrated okra (Abelmoschus esculentus) using cabinet dryer. European Journal of Engineering and Technology, 3(2), 7–19.
  • Ganje, M., Jafari, S. M., Farzaneh, V., & Malekjani, N. (2018). Kinetics modelling of color deterioration during thermal processing of tomato paste with the use of response surface methodology. Heat and Mass Transfer, 54(12), 3663–3671. https://doi.org/10.1007/s00231-018-2394-3
  • Garba, U., Kaur, S., Gurumayum, S., & Rasane, P. (2015). Effect of hot water blanching time and drying temperature on the thin layer drying kinetics of and anthocyanin degradation in black carrot (Daucus carota L.) shreds. Food Technology and Biotechnology, 53(3), 324–330. https://doi.org/10.17113/ftb.53.03.15.3830
  • Garba, Z. N., & Oviosa, S. (2019). The effect of different drying methods on the elemental and nutritional composition of Vernonia amygdalina (bitter leaf). Journal of Taibah University for Science, 13(1), 396–401. https://doi.org/10.1080/16583655.2019.1582148
  • Gomez, S., Kuruvila, B., Maneesha, P. K., & Joseph, M. (2022). Variation in physico-chemical, organoleptic and microbial qualities of intermediate moisture pineapple (Ananas comosus (L.) Merr.) slices during storage. Food Production, Processing and Nutrition, 4(5), 1–11. https://doi.org/10.1186/s43014-022-00084-2
  • Guiné, R. P. F. (2018). The Drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. International Journal of Food Engineering, 4(2), 93–100.
  • Huang, J., & Zhang, M. (2016). Effect of three drying methods on the drying characteristics and quality of okra. Drying Technology, 34(8), 900–911. https://doi.org/10.1080/07373937.2015.1086367
  • Hussein, J. B., Ilesanmi, J. O. Y., Filli, K. B., & Sanusi, M. S. (2018). Effects of drying methods on the chemical properties of okra (Abelmoschus esculentus L. Moench) slices. Current Journal of Applied Science and Technology, 26(6), 1–10. https://doi.org/10.9734/CJAST/2018/38796
  • Isnawaida, Y., N, F., Prahesti, K. I., Malaka, R., & Hajrawati, (2021). Detection of coliform bacteria, total plate count and pH value in chicken eggs from Maros traditional market. IOP Conference Series: Earth and Environmental Science, 788, 012158.
  • Kumar, D., Prasad, S., & Murthy, G. S. (2014). Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51(2), 221–232. https://doi.org/10.1007/s13197-011-0487-9
  • Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT-Food Science and Technology, 101, 630–638. https://doi.org/10.1016/j.lwt.2018.11.076
  • Maghfiroh, L., Estoepangestie, A. T. S., Nurhajati, T., & Harijani, N. (2021). Total plate count of commercial pasteurized milk sold by street vendors in Mulyorejo Sub-District Surabaya. Journal of Halal Product and Research, 4(2), 56–61. https://doi.org/10.20473/jhpr.vol.4-issue.2.65-70
  • Martinazzo, A. P., Correa, F., Luiz, C., & Berbert, P. A. (2016). Drying kinetics and microbiological quality of green onions. Revista Ceres, 63(6), 769–774. https://doi.org/10.1590/0034-737x201663060004
  • Md Saleh, R., Kulig, B., Hensel, O., & Sturm, B. (2020). Investigation of dynamic quality changes and optimization of drying parameters of carrots (Daucus carota var. laguna). Journal of Food Process Engineering, 43(2), e13314. https://doi.org/10.1111/jfpe.13314
  • Menon, A., Stojceska, V., & Tassou, S. A. (2020). Systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science & Technology, 100, 67–76. https://doi.org/10.1016/j.tifs.2020.03.014
  • Nurkhoeriyati, T., Kulig, B., Sturm, B., & Hensel, O. (2021). The effect of pre-drying treatment and drying conditions on quality and energy consumption of hot air-dried celeriac slices: Optimisation. Foods, 10(8), 1758. https://doi.org/10.3390/foods10081758
  • Nwakuba, N. R., Chukwuezie, O. C., Asonye, G. U., & Asoegwu, S. N. (2018). Energy analysis and optimization of thin layer drying conditions of okra. Arid Zone Journal of Engineering, Technology and Environment, 14(SP.i4), 129–148. https://azojete.com.ng/index.php/azojete/article/view/260
  • Okunola, A., Adekanye, T., & Idahosa, E. (2021). Energy and exergy analyses of okra drying process in a forced convection cabinet dryer. Research in Agricultural Engineering, 67(No. 1), 8–16. https://doi.org/10.17221/48/2020-RAE
  • Olajire, A. S., Tunde-Akintunde, T. Y., & Ogunlakin, G. O. (2018). Drying kinetics and moisture diffusivity study of okra slice. Journal of Food Processing and Technology, 9, 751–757. https://www.walshmedicalmedia.com/open-access/drying-kinetics-and-moisture-diffusivity-study-of-okro-slice-37277.html
  • Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2017). Quality properties of fruits as affected by drying operation. Critical Review of Food Science and Nutrition, 57(1), 95–108. https://doi.org/10.1080/10408398.2013.859563
  • Onwude, D. I., Iranshahi, K., Rubinetti, D., Schudel, S., Schemminger, J., Martynenko, A., & Defraeye, T. (2022). How much do process parameters affect the residual quality attributes of dried fruits and vegetables for convective drying? Food and Bioproducts Processing, 131, 176–190. https://doi.org/10.1016/j.fbp.2021.11.005
  • Owolarafe, O. K., Bello, T. K., Ogunsina, B. S., Falana, O. B., Adetifa, B. O., & Ogunseeyin, O. (2021). Performance evaluation of a small-scale dryer for agricultural products. Agricultural Engineering International: CIGR Journal, 23(3), 261–270.
  • Pendre, N. K., Nema, P. K., Sharma, H. P., Rathore, S. S., & Kushwah, S. S. (2012). Effect of drying temperature and slice size on quality of dried okra (Abelmoschus esculentus (L.) Moench). Journal of Food Science and Technology, 49(3), 378–381. https://doi.org/10.1007/s13197-011-0427-8
  • Ragab, G. M., El-Barrawy, M. A., & Meheissen, M. A. (2020). Evaluation of the microbial quality of food served in a University Hospital in Alexandria. Journal of High Institute of Public Health, 50(2), 101–105. https://doi.org/10.21608/jhiph.2020.109128
  • Samakradhamrongthai, R. S., Nortuy, N., Jannu, T., Supawan, T., Chanakun, P. et al. (2022). Influence of three drying methods on physicochemical properties of okra (Abelmoschus esculentus L.) powder. Journal of Food Processing and Preservation, 46(3), e16381. https://doi.org/10.1111/jfpp.16381
  • Samakradhamrongthai, R. S., Nortuy, N., Jannu, T., Supawan, T., Chanakun, P., Yimkaew, Y., & Renaldi, G. (2022). Influence of three drying methods on physicochemical properties of okra (Abelmoschus esculentus L.) powder. Journal of Food Processing and Preservation, 46(3), 1–9. https://doi.org/10.1111/jfpp.16381
  • Sasongko, S. B., Hadiyanto, H., Djaeni, M., Perdanianti, A. M., & Utari, F. D. (2020). Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon, 6(7), e04338. https://doi.org/10.1016/j.heliyon.2020.e04338
  • Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M., & Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(1), 101–112. https://doi.org/10.3390/foods9010101
  • Shishir, M. R. I., Taip, F. S., Aziz, A., Talib, R. A., & Sarker, S. H. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnology, 25(2), 461–468. https://doi.org/10.1007/s10068-016-0064-0
  • Sidhu, G. K., Singh, M., & Kaur, P. (2019). Effect of operational parameters on physicochemical quality and recovery of spray‐dried tomato powder. Journal of Food Processing and Preservation, 43(10), e14120. https://doi.org/10.1111/jfpp.14120
  • Silva, B. G., Fileti, A. M. F., Foglio, M. A., Rosa, P. D. T. V., & Taranto, O. P. (2017). Effects of Different Drying Conditions on Key Quality Parameters of Pink Peppercorns (Schinus terebinthifolius Raddi). Journal of Food Quality, 2017, 1–12. https://doi.org/10.1155/2017/3152797
  • Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (Agaricus bisporus) during tray drying process. Journal of Food Process Engineering, 43(12), e13555. https://doi.org/10.1111/jfpe.13555
  • Taheri-Garavand, A., Karimi, F., Karimi, M., Lotfi, V., & Khoobbakht, G. (2017). Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Science and Technology International, 24(4), 277–291. https://doi.org/10.1177/1082013217747712
  • Taheri-Garavand, A., & Meda, V. (2018). Drying kinetics and modeling of savory leaves under different drying conditions. International Food Research Journal, 25(4), 1357–1364. https://doi.org/10.1177/1082013217747712
  • Tamboli, F. A., More, H. N., Bhandugare, S. S., Patil, A. S., Jadhav, N. R. et al. (2020). Estimation of total carbohydrate content by phenol sulphuric acid method from Eichhornia crassipes (Mart.) Solms. Asian Journal of Research in Chemistry, 13(5), 357–359. https://doi.org/10.5958/0974-4150.2020.00067.X
  • Van Schothorst, M. (1998). International commission on microbiological specification for foods) principles for the establishment of microbiological food safety objectives and related control measures. Food Control, 9(6), 379–384. https://doi.org/10.1016/S0956-7135(98)00129-7
  • Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413–433. https://doi.org/10.1007/s11947-016-1855-2
  • Zhao, -C.-C., Jiang, G.-H., & Eun, J.-B. (2017). Optimization of drying process for squid-laver snack by a combined method of fuzzy synthetic and response surface methodology. Journal of Food Quality, 2017(Article ID 9761356), 1–10. https://doi.org/10.1155/2017/9761356
  • Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212(1), 671–680. https://doi.org/10.1016/j.foodchem.2016.06.003