2,254
Views
4
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Nanomaterials in recycled aggregates concrete applications: mechanical properties and durability. A review

, , , , &
Article: 2122885 | Received 30 Mar 2022, Accepted 06 Sep 2022, Published online: 18 Sep 2022

References

  • Abdul-Hamead, A. A., Mohammed, R. K., & Othman, F. M. (2018). Investigation the effect of nano–particles and recycling mortar additives on physical and mechanical properties of concrete. Engineering and Technology Journal, 36(3), 295–38. https://doi.org/10.30684/etj.36.3a.8
  • Abu Al-Rub, R. K., Ashour, A. I., & Tyson, B. M. (2012, Oct). On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. construction and Building Materials, 35, 647–655. https://doi.org/10.1016/j.conbuildmat.2012.04.086
  • Adamu, M., Mohammed, B. S., Shafiq, N., & Liew, M. S. (2018). Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica. Int. J. Pavement Eng, 5(10), 53–61. https://doi.org/10.1080/10298436.2018.1547825
  • Adamu, M., Mohammed, B. S., Shafiq, N., Shahir Liew, M., & Zampieri, P. (2018). Effect of crumb rubber and nano silica on the fatigue performance of roller compacted concrete pavement. Cogent engineering, 5(1), 1–10. https://doi.org/10.1080/23311916.2018.1436027
  • Agarwal, A., Bhusnur, S., & Shanmuga Priya, T. (2019). Experimental investigation on recycled aggregate with laboratory concrete waste and nano-silica. Materials Today: Proceedings, 22, 1433–1442. https://doi.org/10.1016/j.matpr.2020.01.487
  • Akarsh, P. K., Marathe, S., & Bhat, A. K. (2021, Jan). Influence of graphene oxide on properties of concrete in the presence of silica fumes and M-sand. construction and Building Materials, 268, 121093. https://doi.org/10.1016/j.conbuildmat.2020.121093
  • Alabi, S. A., & Mahachi, J. (2021). Chloride ion penetration performance of recycled concrete with different geopolymers. Materials Today: Proceedings, 38, 762–766. https://doi.org/10.1016/j.matpr.2020.04.199
  • Alhans, R., Singh, A., Singhal, C., Narang, J., Wadhwa, S., & Mathur, A. (2018). Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards. Materials Science and Engineering: C, 90(April), 273–279. https://doi.org/10.1016/j.msec.2018.04.072
  • Alhawat, M., & Ashour, A. (2020). Bond strength between corroded steel and recycled aggregate concrete incorporating nano silica. construction and Building Materials, 237, 117441. https://doi.org/10.1016/j.conbuildmat.2019.117441
  • Ali, B., & Qureshi, L. A. (2019). Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. construction and Building Materials, 228, 116783. https://doi.org/10.1016/j.conbuildmat.2019.116783
  • Ali Shafabakhsh, G., Janaki, A. M., & Ani, O. J. (2020). Laboratory investigation on durability of nano clay modified concrete pavement. Engineering Journal, 24(3), 35–44. https://doi.org/10.4186/ej.2020.24.3.35
  • Allujami, H. M., Jassam, T. M., & Al-Mansob, R. A. (2021). Nanomaterials characteristics and current utilization status in rigid pavements: Mechanical features and sustainability. A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.077
  • Al-Saleh, S. A. (2015). Analysis of total chloride content in concrete. Case Stud. Constr. Mater, 3, 78–82. https://doi.org/10.1016/j.cscm.2015.06.001
  • Amin, M. S., El-Gamal, S. M. A., & Hashem, F. S. (2015). Fire resistance and mechanical properties of carbon nanotubes - Clay bricks wastes (Homra) composites cement. construction and Building Materials, 98, 237–249. https://doi.org/10.1016/j.conbuildmat.2015.08.074
  • Arora, S., Singh, B., & Bhardwaj, B. (2019). Strength performance of recycled aggregate concretes containing mineral admixtures and their performance prediction through various modeling techniques. journal of Building Engineering, 24(November 2018), 100741. https://doi.org/10.1016/j.jobe.2019.100741
  • Aslani, F., Ma, G., Yim Wan, D. L., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553–566. https://doi.org/10.1016/J.JCLEPRO.2018.02.074
  • Bahoria, B. V., Parbat, D. K., & Nagarnaik, P. B. (2018, Jan). XRD analysis of natural sand, quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete. Materials Today: Proceedings, 5(1), 1432–1438. https://doi.org/10.1016/j.matpr.2017.11.230
  • Bhasya, V., & Bharatkumar, B. H. (2018, Mar). Mechanical and durability properties of concrete produced with treated recycled concrete aggregate. ACI Materials Journal, 115(2), 209–217. https://doi.org/10.14359/51701239
  • Bin Song, X., Zhi Li, C., Dan Chen, D., & Lin Gu, X. (2021). Interfacial mechanical properties of recycled aggregate concrete reinforced by nano-materials. Construction and Building Materials, 270, 121446. https://doi.org/10.1016/j.conbuildmat.2020.121446
  • Bui, N. K., Satomi, T., & Takahashi, H. (2018). Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate. construction and Building Materials, 163, 496–507. https://doi.org/10.1016/j.conbuildmat.2017.12.131
  • Camiletti, J., Soliman, A. M., & Nehdi, M. L. (2013, Mar). Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. magazine of Concrete Research, 65(5), 297–307. https://doi.org/10.1680/macr.12.00015
  • Carriço, A., Bogas, J. A., Hawreen, A., & Guedes, M. (2018). Durability of multi-walled carbon nanotube reinforced concrete. Construction and Building Materials, 164, 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221
  • Chalangaran, N., Farzampour, A., & Paslar, N. (2020). Nano silica and metakaolin effects on the behavior of concrete containing rubber crumbs. CivilEng, 1(3), 264–274. https://doi.org/10.3390/civileng1030017
  • Chenari, H. M., Seibel, C., Hauschild, D., Reinert, F., & Abdollahian, H. (2016). Titanium dioxide nanoparticles: Synthesis, X-ray line analysis and chemical composition study. materials Research, 19(6), 1319–1323. https://doi.org/10.1590/1980-5373-MR-2016-0288
  • Chen, X. F., & Kou, S. C. (2019). Sulfur dioxide degradation by composite photocatalysts prepared by recycled fine aggregates and nanoscale titanium dioxide. Nanomaterials, 9(11), 1533. https://doi.org/10.3390/nano9111533
  • Cree, D., Green, M., & Noumowé, A. (2013). Residual strength of concrete containing recycled materials after exposure to fire: A review. construction and Building Materials, 45, 208–223. https://doi.org/10.1016/j.conbuildmat.2013.04.005
  • Dawood, E. T., & Mahmood, M. S. (2021, Jun). Production of sustainable concrete brick units using nano-silica. Case Stud. Constr. Mater, 14, e00498. https://doi.org/10.1016/J.CSCM.2021.E00498
  • De Brito, J., Agrela, F., & Silva, R. V. (2019, Jan). Legal regulations of recycled aggregate concrete in buildings and roads. New Trends Eco-efficient Recycl. Concr, 509–526. https://doi.org/10.1016/B978-0-08-102480-5.00018-X
  • De Brito, J., Ferreira, J., Pacheco, J., Soares, D., & Guerreiro, M. (2016). Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete. journal of Building Engineering, 6, 1–16. https://doi.org/10.1016/j.jobe.2016.02.003
  • Erdem, S., Hanbay, S., & Güler, Z. (2018). Micromechanical damage analysis and engineering performance of concrete with colloidal nano-silica and demolished concrete aggregates. construction and Building Materials, 171, 634–642. https://doi.org/10.1016/j.conbuildmat.2018.03.197
  • Evangelista, L., & Guedes, M. (2018). Microstructural studies on recycled aggregate concrete. New trends in eco-efficient and recycled concrete, 24(11), 425–451. https://doi.org/10.1016/B978-0-08-102480-5.00014-2
  • Feng, W., Tang, Y., Zhang, Y., Qi, C., Ma, L., & Li, L. (2022, Mar). Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: Constitutive model and enhancement mechanism. Journal of Materials Research and Technology, 17, 192–210. https://doi.org/10.1016/J.JMRT.2021.12.135
  • Feng, W., Wang, Y., Sun, J., Tang, Y., Wu, D., Jiang, Z., Wang, J., & Wang, X. (2022). Prediction of thermo-mechanical properties of rubber-modified recycled aggregate concrete. Construction and Building Materials, 318, 125970. https://doi.org/10.1016/j.conbuildmat.2021.125970
  • Gao, C., Huang, L., Yan, L., Jin, R., & Chen, H. (2020). Mechanical properties of recycled aggregate concrete modified by nano-particles. construction and Building Materials, 241, 118030. https://doi.org/10.1016/j.conbuildmat.2020.118030
  • Gorbatsevich, O. B., Kholodkov, D. N., Kurkin, T. S., Malakhova, Y. N., Strel’tsov, D. R., Buzin, A. I., Kazakova, V. V., & Muzafarov, A. M. (2017, Mar). Synthesis and properties of water-soluble silica nanoparticles. russian Chemical Bulletin, 66(3), 409–417. https://doi.org/10.1007/s11172-017-1748-1
  • Habeb Abdulrazzak, F., Fadel Alkiam, A., & Hasan Hussein, F. (2019). Behavior of X-ray analysis of carbon nanotubes. In Perspective of Carbon Nanotubes. IntechOpen.
  • Han, C., Hu, Y., Wang, K., & Luo, G. (2019, Nov). Preparation and in-situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system. Powder Technology, 356, 414–422. https://doi.org/10.1016/j.powtec.2019.08.054
  • Haruehansapong, S., Pulngern, T., & Chucheepsakul, S. (2017). Effect of nanosilica particle size on the water permeability, abrasion resistance, drying shrinkage, and repair work properties of cement mortar containing Nano-SiO 2. Advances in Materials Science and Engineering, 2017, 1–11. https://doi.org/10.1155/2017/4213690
  • Hassan, M. M., Dylla, H., Mohammad, L. N., & Rupnow, T. (2012). Methods for the application of titanium dioxide coatings to concrete pavement. Int. J. Pavement Res. Technol, 5 (1), 12–20. [Online]. Available https://trid.trb.org/view/1128493
  • Hosseini, P., Booshehrian, A., Delkash, M., Ghavami, S., & Zanjani, M. K. (2009). Use of nano-SiO2 to improve microstructure and compressive strength of recycled aggregate concretes. Nanotechnol. Constr, 3, 215–221. https://doi.org/10.1007/978-3-642-00980-829
  • Hosseini, P., Booshehrian, A., & Madari, A. (2011). Developing concrete recycling strategies by utilization of nano-SiO 2 particles. Waste and Biomass Valorization, 2(3), 347–355. https://doi.org/10.1007/s12649-011-9071-9
  • Hou, P., Qian, J., Cheng, X., & Shah, S. P. (2015, Jan). Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cement and Concrete Composites, 55, 250–258. https://doi.org/10.1016/J.CEMCONCOMP.2014.09.014
  • Hussein, A. I., Ab-Ghani, Z., Mat, A. N. C., Ghani, N. A. A., Husein, A., & Rahman, I. A. (2020). Synthesis and characterization of spherical calcium carbonate nanoparticles derived from cockle shells. applied Sciences, 10(20), 1–14. https://doi.org/10.3390/app10207170
  • Ismail, S., Kwan, W. H., & Ramli, M. (2017). Mechanical strength and durability properties of concrete containing treated recycled concrete aggregates under different curing conditions. construction and Building Materials, 155, 296–306. https://doi.org/10.1016/j.conbuildmat.2017.08.076
  • Ismail, S., & Mahyuddin, R. (2014). A study on the effect of surface-treated coarse recycled concrete aggregate (RCA) on the compressive strength of concrete. advanced Materials Research, 935(8), 184–187. https://doi.org/10.4028/www.scientific.net/AMR.935.184
  • Jaishankar, P., & Karthick Raja, R. (2019). Micro structure properties of parent concrete with nano silica and polypropylene fibre in recycled aggregate. Int. J. Recent Technol. Eng, 8(3), 4949–4953. https://doi.org/10.35940/ijrte.C5610.098319
  • Kawashima, S., Seo, J. W. T., Corr, D., Hersam, M. C., & Shah, S. P. (2014). Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. materials and Structures, 47(6), 1011–1023. https://doi.org/10.1617/s11527-013-0110-9
  • Kou, S. C., & Poon, C. S. (2010, Sep). Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. cement and Concrete Composites, 32(8), 649–654. https://doi.org/10.1016/j.cemconcomp.2010.05.003
  • Kou, S. C., & Poon, C. S. (2012, Oct). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032
  • Kou, S. C., & Poon, C. S. (2013). Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. cement and Concrete Composites, 37(1), 12–19. https://doi.org/10.1016/j.cemconcomp.2012.12.011
  • Krishna, P. H., & Krishna, P. B. (2017). Effect of nano-silica and metakaolin on properties of recycled coarse aggregate concrete. International Journal of Advanced Engneering and Research Development, 4(1), 831. https://doi.org/10.21090/ijaerd.04015
  • Krzemień, K., & Hager, I. (2015). Assessment of concrete susceptibility to fire spalling: A report on the state-of-the-art in testing procedures. Procedia Engineering, 108, 285–292. https://doi.org/10.1016/j.proeng.2015.06.149
  • Kumar, R. (2017). Influence of recycled coarse aggregate derived from construction and demolition waste (CDW) on abrasion resistance of pavement concrete. Construction and Building Materials, 142, 248–255. https://doi.org/10.1016/j.conbuildmat.2017.03.077
  • Lavergne, F., Belhadi, R., Carriat, J., & Ben Fraj, A. (2019, Jan). Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cement and Concrete Composites, 95, 42–55. https://doi.org/10.1016/j.cemconcomp.2018.10.007
  • Lee, G. C., & Choi, H. B. (2013). Study on interfacial transition zone properties of recycled aggregate by micro-hardness test. construction and Building Materials, 40, 455–460. https://doi.org/10.1016/j.conbuildmat.2012.09.114
  • Liang, Z., Hu, Z., Zhou, Y., Wu, Y., Zhou, X., Hu, B., & Guo, M. (2022, Jan). Improving recycled aggregate concrete by compression casting and nano-silica. Nanotechnology Reviews, 11(1), 1273–1290. https://doi.org/10.1515/NTREV-2022-0065/ASSET/GRAPHIC/J_NTREV-2022-0065_FIG_013.JPG
  • Liao, D. L., & Liao, B. Q. (2007). Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry, 187(2–3), 363–369. https://doi.org/10.1016/j.jphotochem.2006.11.003
  • Li, W., Long, C., Tam, V. W. Y., Poon, C. S., & Hui Duan, W. (2017, Jul). Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. construction and Building Materials, 142, 42–50. https://doi.org/10.1016/j.conbuildmat.2017.03.051
  • Li, W., Luo, Z., Long, C., Wu, C., Duan, W. H., & Shah, S. P. (2016). Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading. Materials & Design, 112, 58–66. https://doi.org/10.1016/j.matdes.2016.09.045
  • Li, L. J., Tu, G. R., Lan, C., & Liu, F. (2016). Mechanical characterization of waste-rubber-modified recycled-aggregate concrete. Journal of Cleaner Production, 124, 325–338. https://doi.org/10.1016/j.jclepro.2016.03.003
  • Liu, Z., Cai, C. S., Peng, H., & Fan, F. (2016). Experimental study of the geopolymeric recycled aggregate concrete. Journal of Materials in Civil Engineering, 28(9), 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001584
  • Liu, J., Chen, H., Guan, B., Liu, K., Wen, J., & Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material. Construction and Building Materials, 190, 287–293. https://doi.org/10.1016/j.conbuildmat.2018.09.025
  • Liu, W., Cui, H., Dong, Z., Xing, F., Zhang, H., & Lo, T. Y. (2016). Carbonation of concrete made with dredged marine sand and its effect on chloride binding. Construction and Building Materials, 120, 1–9. https://doi.org/10.1016/j.conbuildmat.2016.05.011
  • Liu, C., He, X., Deng, X., Wu, Y., Zheng, Z., Liu, J., & Hui, D. (2020). Application of nanomaterials in ultra-high performance concrete: A review. nanotechnology Reviews, 9(1), 1427–1444. https://doi.org/10.1515/ntrev-2020-0107
  • Liu, S., Shen, P., Xuan, D., Li, L., Sojobi, A., Zhan, B., & Poon, C. S. (2021). A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate. Cement and Concrete Composites, 118, 103988. https://doi.org/10.1016/j.cemconcomp.2021.103988
  • Li, J., Xiao, H., & Zhou, Y. (2009, Mar). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. construction and Building Materials, 23(3), 1287–1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019
  • Li, L., Xuan, D., Chu, S. H., Lu, J. X., & Poon, C. S. (2021). Efficiency and mechanism of nano-silica pre-spraying treatment in performance enhancement of recycled aggregate concrete. Construction and Building Materials, 301, 124093. https://doi.org/10.1016/j.conbuildmat.2021.124093
  • Li, L., Xuan, D., Sojobi, A. O., Liu, S., Chu, S. H., & Poon, C. S. (2021). Development of nano-silica treatment methods to enhance recycled aggregate concrete. Cement and Concrete Composites, 118(February), 103963. https://doi.org/10.1016/j.cemconcomp.2021.103963
  • Makhloufi, Z., Bederina, M., Bouhicha, M., & Kadri, E. H. (2014). Effect of mineral admixtures on resistance to sulfuric acid solution of mortars with quaternary binders. Physics Procedia, 55, 329–335. https://doi.org/10.1016/j.phpro.2014.07.048
  • Malešič, J., Kadivec, M., Kunaver, M., Skalar, T., & Cigić, I. K. (2019). Nano calcium carbonate versus nano calcium hydroxide in alcohols as a deacidification medium for lignocellulosic paper. heritage Science, 7(1), 1–14. https://doi.org/10.1186/s40494-019-0294-6
  • Mansor, M. R., Fadzullah, S. H. S. M., Masripan, N. A. B., Omar, G., & Akop, M. Z., Comparison between functionalized graphene and carbon nanotubes: Effect of morphology and surface group on mechanical, electrical, and thermal properties of nanocomposites, in Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications, Elsevier, 2018, pp. 177–204.
  • Ma, Z., Tang, Q., Yang, D., & Ba, G. (2019). Durability studies on the recycled aggregate concrete in China over the past decade: A review. Advanced Civil Engneering, 2019. https://doi.org/10.1155/2019/4073130
  • Meng, R. T., Meng, T., Huang, M. Z., & Xu, Q. L. (2013). Research on composite strengthening nano-technique of recycled aggregate. applied Mechanics and Materials, 357–360, 1189–1193. https://doi.org/10.4028/www.scientific.net/AMM.357-360.1189
  • Meng, T., Yu, Y., & Wang, Z. (2017, May). Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Composites Part B: Engineering, 117, 124–129. https://doi.org/10.1016/j.compositesb.2017.02.030
  • Meng, T., Zhang, J., Wei, H., & Shen, J. (2020). Effect of nano-strengthening on the properties and microstructure of recycled concrete. nanotechnology Reviews, 9(1), 79–92. https://doi.org/10.1515/ntrev-2020-0008
  • Mirgozar Langaroudi, M. A., & Mohammadi, Y. (2018). Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Construction and Building Materials, 191, 619–634. https://doi.org/10.1016/j.conbuildmat.2018.10.044
  • Moffatt, E. G., & Thomas, M. D. A. (2017). Performance of rapid-repair concrete in an aggressive marine environment. Construction and Building Materials, 132, 478–486. https://doi.org/10.1016/j.conbuildmat.2016.12.004
  • Mohamed, A. M. (2016, Aug). Influence of nano materials on flexural behavior and compressive strength of concrete. HBRC Journal, 12(2), 212–225. https://doi.org/10.1016/j.hbrcj.2014.11.006
  • Mohammed, B. S., & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction and Building Materials, 159, 234–251. https://doi.org/10.1016/j.conbuildmat.2017.10.098
  • Moro, C., Francioso, V., & Velay-Lizancos, M. (2020). Nano-TiO2 effects on high temperature resistance of recycled mortars. Journal of Cleaner Production, 263(x), 121581. https://doi.org/10.1016/j.jclepro.2020.121581
  • Muduli, R., & Mukharjee, B. B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete. Journal of Cleaner Production, 209, 398–414. https://doi.org/10.1016/j.jclepro.2018.10.221
  • Mukharjee, B. B., & Barai, S. V. (2014a). Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete. Construction and Building Materials, 71, 570–578. https://doi.org/10.1016/j.conbuildmat.2014.08.040
  • Mukharjee, B. B., & Barai, S. V. (2014b). Influence of nano-silica on the properties of recycled aggregate concrete. construction and Building Materials, 55, 29–37. https://doi.org/10.1016/j.conbuildmat.2014.01.003
  • Mukharjee, B. B., & Barai, S. V. (2014c). Statistical techniques to analyze properties of nano-engineered concrete using recycled coarse aggregates. Journal of Cleaner Production, 83, 273–285. https://doi.org/10.1016/j.jclepro.2014.07.045
  • Mukharjee, B. B., & Barai, S. V. (2015). Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica. advances in Concrete Construction, 3(3), 187–202. https://doi.org/10.12989/acc.2015.3.3.187
  • Mukharjee, B. B., & Barai, S. V. (2017). Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles. J. Sustain. Cem. Mater, 6(1), 37–53. https://doi.org/10.1080/21650373.2016.1230899
  • Murthi, P., Poongodi, K., Awoyera, P. O., Gobinath, R., & Saravanan, R. (2020). Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, nano-silica, bagasse ash. Silicon, 12(8), 1949–1956. https://doi.org/10.1007/s12633-019-00324-0
  • Nikbin, I. M., Mohebbi, R., Dezhampanah, S., Mehdipour, S., Mohammadi, R., & Nejat, T. (2019, Sep). Gamma ray shielding properties of heavy-weight concrete containing nano-TiO2. radiation Physics and Chemistry, 162, 157–167. https://doi.org/10.1016/j.radphyschem.2019.05.008
  • Niroumand, H., Zain, M. F. M., & Alhosseini, S. N. (2013). The influence of nano-clays on compressive strength of earth bricks as sustainable materials. Procedia - Social and Behavioral Sciences, 89, 862–865. https://doi.org/10.1016/j.sbspro.2013.08.945
  • Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. (2020). Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production, 252, 119797. https://doi.org/10.1016/j.jclepro.2019.119797
  • Nuaklong, P., Sata, V., Wongsa, A., Srinavin, K., & Chindaprasirt, P. (2018). Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. construction and Building Materials, 174, 244–252. https://doi.org/10.1016/j.conbuildmat.2018.04.123
  • Ossa, A., García, J. L., & Botero, E. (2016, Nov). Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088
  • Ouyang, K., Shi, C., Chu, H., Guo, H., Song, B., Ding, Y., Guan, X., Zhu, J., Zhang, H., Wang, Y., & Zheng, J. (2020). An overview on the efficiency of different pretreatment techniques for recycled concrete aggregate. Journal of Cleaner Production, 263, 121264. https://doi.org/10.1016/j.jclepro.2020.121264
  • Pacheco-Torgal, F., & Jalali, S. (2011). Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Construction and Building Materials, 25(2), Elsevier, 582–590. https://doi.org/10.1016/j.conbuildmat.2010.07.009
  • Pedro, D., de Brito, J., & Evangelista, L. (2017). Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Construction and Building Materials, 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215
  • Pyo, S., Abate, S. Y., & Kim, H. K. (2018). Abrasion resistance of ultra high performance concrete incorporating coarser aggregate. Construction and Building Materials, 165, 11–16. https://doi.org/10.1016/j.conbuildmat.2018.01.036
  • Ragab, A. E.-R. (2019). Physico-chemical properties of nano metakaolin on the characteristics of blended limestone cement. Journal of Building Pathology and Rehabilitation, 4(1), 1–10. https://doi.org/10.1007/s41024-019-0048-6
  • Rao, K. J., Keerthi, K., & Vasam, S. (2018). Acid resistance of quaternary blended recycled aggregate concrete. Case Studies in Construction Materials, 8(January), 423–433. https://doi.org/10.1016/j.cscm.2018.03.005
  • Reales, O. A. M., Jaramillo, Y. P. A., Ocampo, C., Botero, J. C. O., Quintero, J. H., & Filho, R. D. T. (2021, Sep). Anionic, cationic, and nonionic surfactants used as dispersing agents for carbon nanotubes and their effect on cement hydration. Journal of Materials in Civil Engineering, 33(11), 04021325. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003955
  • Ren, W., Han, S., Li, J., & Liu, M. (2017, Jul). Investigation of the relative abrasion resistance of concrete pavement with chip-sprinkled surfaces. Wear, 382-383, 95–101. https://doi.org/10.1016/j.wear.2017.04.011
  • Rizvi, R., Tighe, S., Henderson, V., & Norris, J. (2010). Evaluating the use of recycled concrete aggregate in pervious concrete pavement. Transportation Research Record: Journal of the Transportation Research Board, 2164(2164), 132–140. https://doi.org/10.3141/2164-17
  • Rossen, J. E., & Scrivener, K. L. (2017, Jan). Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples. Materials Characterization, 123, 294–306. https://doi.org/10.1016/j.matchar.2016.11.041
  • Sadati, S., & Khayat, K. H. (2016). Field performance of concrete pavement incorporating recycled concrete aggregate. Construction and Building Materials, 126, 691–700. https://doi.org/10.1016/j.conbuildmat.2016.09.087
  • Sadeghi-Nik, A., Berenjian, J., Alimohammadi, S., Lotfi-Omran, O., Sadeghi-Nik, A., & Karimaei, M. (2019). The effect of recycled concrete aggregates and metakaolin on the mechanical properties of self-compacting concrete containing nanoparticles. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(S1), 503–515. https://doi.org/10.1007/s40996-018-0182-4
  • Salkhordeh, S., Golbazi, P., & Amini, H. (2011). The improvement of 28-day compressive strength of self compacting concrete made by different percentages of recycled concrete aggregates using nano-silica. World Academy of Science, Engineering and Technology, 59(11), 874–877.
  • Sanchez, F., Kosson D, Brown K, Delapp R, Teising R, Gonzalez R, Lewis J, Brown L, Reches Y, Helbing M, Thomson K. (2018). Development of nano-modified concrete for next generation of storage systems. https://doi.org/10.2172/1469196
  • Santha Kumar, G., Saini, P. K., Karade, S. R., & Minocha, A. K. (2019, Sep). Chemico-thermal treatment for quality enhancement of recycled concrete fine aggregates. Journal of Material Cycles and Waste management, 21(5), 1197–1210. https://doi.org/10.1007/s10163-019-00874-w
  • Sasanipour, H., Aslani, F., & Taherinezhad, J. (2021). Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Construction and Building Materials, 270, 121498. https://doi.org/10.1016/j.conbuildmat.2020.121498
  • Scott, L. T. (2017). Methods for the chemical synthesis of carbon nanotubes: An approach based on hemispherical polyarene templates. Pure and Applied Chemistry, Jun, 89(6), 809–820. https://doi.org/10.1515/pac-2016-1222
  • Shaban, W. M., Yang, J., Su, H., Liu, Q.-F., Tsang, D. C. W., Wang, L., Xie, J., & Li, L. (2019). Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Construction and Building Materials, 216, 632–647. https://doi.org/10.1016/j.conbuildmat.2019.04.231
  • Shafiu Kamba, A., Ismail, M., Tengku Ibrahim, T. A., & Zakaria, Z. A. B. (2013). Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa),”. Journal of Nanomaterials, 2013, 1–9. https://doi.org/10.1155/2013/398357
  • Shaikh, F., Chavda, V., Minhaj, N., & Arel, H. S. (2018). Effect of mixing methods of nano silica on properties of recycled aggregate concrete. Structural Concrete, 19(2), 387–399. https://doi.org/10.1002/suco.201700091
  • Shaikh, F. U. A., Odoh, H., & Than, A. B. (2015). Effect of nano silica on properties of concretes containing recycled coarse aggregates. Proceedings of the Institution of Civil Engineers - Construction Materials, 168(2), 68–76. https://doi.org/10.1680/coma.14.00009
  • Sharma, S., & Arora, S. (2018). Economical graphene reinforced fly ash cement composite made with recycled aggregates for improved sulphate resistance and mechanical performance. Construction and Building Materials, 162, 608–612. https://doi.org/10.1016/j.conbuildmat.2017.12.027
  • Shi, C., Wu, Z., Cao, Z., Ling, T. C., & Zheng, J. (2018). Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cement and Concrete Composites, 86, 130–138. https://doi.org/10.1016/j.cemconcomp.2017.10.013
  • Silva, R. V., de Brito, J., & Dhir, R. K. (2019, Nov). Use of recycled aggregates arising from construction and demolition waste in new construction applications. Journal of Cleaner Production, 236, 117629. https://doi.org/10.1016/J.JCLEPRO.2019.117629
  • Singh, L. P., Ali, D., Tyagi, I., Sharma, U., Singh, R., & Hou, P. (2019). Durability studies of nano-engineered fly ash concrete. consTruction and Building Materials, 194, 205–215. https://doi.org/10.1016/j.conbuildmat.2018.11.022
  • Singh, L. P., Bisht, V., Aswathy, M. S., Chaurasia, L., & Gupta, S. (2018). Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Construction and Building Materials, 181, 217–226. https://doi.org/10.1016/j.conbuildmat.2018.05.248
  • Staub de Melo, J. V., & Trichês, G. (2018). Study of the influence of nano-TiO 2 on the properties of Portland cement concrete for application on road surfaces. Road Materials and Pavement Design, 19(5), 1011–1026. https://doi.org/10.1080/14680629.2017.1285811
  • Su, Y., Li, J., Wu, C., Wu, P., & Li, Z. X. (2016). Influences of nano-particles on dynamic strength of ultra-high performance concrete. Composites Part B: Engineering, 91, 595–609. https://doi.org/10.1016/j.compositesb.2016.01.044
  • Tam, V. W. Y., & Tam, C. M. (2008, Oct). Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc. Construction and Building Materials, 22(10), 2068–2077. https://doi.org/10.1016/j.conbuildmat.2007.07.024
  • Tam, V. W. Y., Tam, C. M., & Le, K. N. (2007, Mar). Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resources, Conservation and Recycling, 50(1), 82–101. https://doi.org/10.1016/j.resconrec.2006.05.012
  • Tavakoli, D. (2014). Properties of concrete made with waste clay brick as sand incorporating nano SiO2. Indian Journal of Science and Technology, 7(12), 1899–1905. https://doi.org/10.17485/ijst/2014/v7i12.1
  • Tavakoli, D., Sakenian Dehkordi, R., Divandari, H., & de Brito, J. (2020). Properties of roller-compacted concrete pavement containing waste aggregates and nano SiO2. Construction and Building Materials, 249, 118747. https://doi.org/10.1016/j.conbuildmat.2020.118747
  • Tayeh, B. A., Al Saffar, D. M., & Alyousef, R. (2020, Jul). The utilization of recycled aggregate in high performance concrete: A review. Journal of Materials Research and Technology, 9(4), 8469–8481. https://doi.org/10.1016/J.JMRT.2020.05.126
  • Thomas, C., Setién, J., Polanco, J. A., Alaejos, P., & Sánchez De Juan, M. (2013). Durability of recycled aggregate concrete. Construction and Building Materials, 40, 1054–1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106
  • Thomas, J., Thaickavil, N. N., & Wilson, P. M. (2018). Strength and durability of concrete containing recycled concrete aggregates. Journal of Building Engineering, 19, 349–365. https://doi.org/10.1016/j.jobe.2018.05.007
  • Toghroli, A., Mehrabi, P., Shariati, M., Trung, N. T., Jahandari, S., & Rasekh, H. (2020). Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Construction and Building Materials, 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997
  • Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), 2804–2814. https://doi.org/10.1007/s11661-008-9603-5
  • Umasabor, R. I., & Okovido, J. O. (2018). Fire resistance evaluation of rice husk ash concrete. Heliyon, 4(12), e01035. https://doi.org/10.1016/j.heliyon.2018.1035
  • Vasanthi, P., & Senthil Selvan, S. (2020). Study on mechanical performance of recycled aggregate concrete with modified nano silica in cement. International Journal of Advanced Science and Technology, 29(7), 1060–1069.
  • Vinay Kumar, B. M., Ananthan, H., & Balaji, K. V. A. (2018). Experimental studies on utilization of recycled coarse and fine aggregates in high performance concrete mixes. Alexandria engineering Journal, 57(3), 1749–1759. https://doi.org/10.1016/j.aej.2017.05.003
  • Wang, X., Cheng, F., Wang, Y., Zhang, X., & Niu, H. (2020). Impact properties of recycled aggregate concrete with nanosilica modification. Adv. Civ. Eng, 2020. https://doi.org/10.1155/2020/8878368
  • Wang, Y., Hughes, P., Niu, H., & Fan, Y. (2019‏). A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica‏. Journal of Cleaner Production, 236, 2019. https://doi.org/10.1016/j.jclepro.2019.07.077
  • Wu, C., Ma, W., Li, Y., & Chen, Y. (2014). Nano materials and its application in space‏. Trans Tech Publ‏ication, 482, 34–37. https://doi.org/10.4028/www.scientific.net/AMM.482.34
  • Xiao, J., Li, L., Shen, L., & Poon, C. S. (2015). Compressive behaviour of recycled aggregate concrete under impact loading. Cement and Concrete Research, 71, 46–55. https://doi.org/10.1016/j.cemconres.2015.01.014
  • Xie, J., Zhang, H., Duan, L., Yang, Y., Yan, J., Shan, D., Liu, X., Pang, J., Chen, Y., Li, X., & Zhang, Y. (2020). Effect of nano metakaolin on compressive strength of recycled concrete. Construction and Building Materials, 256, 119393. https://doi.org/10.1016/j.conbuildmat.2020.119393
  • Xu, Y. et al. (2020). Studying the mix design and investigating the photocatalytic performance of pervious concrete containing TiO2-Soaked recycled aggregates. Journal of Cleaner Production, 248, 119281. https://doi.org/10.1016/j.jclepro.2019.119281
  • Xu, S., Liu, J., & Li, Q. (2015, Feb). Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Construction and Building Materials, 76, 16–23. https://doi.org/10.1016/j.conbuildmat.2014.11.049
  • Ying, J., Zhou, B., & Xiao, J. (2017). Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. construction and Building Materials, 150, 49–55. https://doi.org/10.1016/j.conbuildmat.2017.05.168
  • Yonggui, W., Shuaipeng, L., Hughes, P., & Yuhui, F. (2020). Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Construction and Building Materials, 247, 118561. https://doi.org/10.1016/j.conbuildmat.2020.118561
  • Younis, K. H., & Mustafa, S. M. (2018). Feasibility of using nanoparticles of SiO 2 to improve the performance of recycled aggregate concrete. Advances in Materials Science and Engineering, 2018, 3–5. https://doi.org/10.1155/2018/1512830
  • Yue, Y., Zhou, Y., Xing, F., Gong, G., Hu, B., & Guo, M. (2020). An industrial applicable method to improve the properties of recycled aggregate concrete by incorporating nano-silica and micro-CaCO3. Journal of Cleaner Production, 259, 120920. https://doi.org/10.1016/j.jclepro.2020.120920
  • Yunchao, T., Zheng, C., Wanhui, F., Yumei, N., Cong, L., & Jieming, C. (2021, Jan). Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete. Nanotechnology Reviews, 10(1), 819–838. https://doi.org/10.1515/NTREV-2021-0058/ASSET/GRAPHIC/J_NTREV-2021-0058_FIG_019.JPG
  • Yuvaraj, S., & Anish, V. (2019). Strength properties of nano silica recycled sustainable concrete. International Journal of Engineering and Innovative Technology, 8(10), 2245–2248. https://doi.org/10.35940/ijitee.I8954.0881019
  • Zeng, W., Zhao, Y., Zheng, H., & Sun Poon, C. (2019). Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates. Cement and Concrete Composites, 106(November), 103476. https://doi.org/10.1016/j.cemconcomp.2019.103476
  • Zhang, P., Wan, J., Wang, K., & Li, Q. (2017, Sep). Influence of nano-SiO 2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648–658. https://doi.org/10.1016/j.conbuildmat.2017.05.059
  • Zhang, H., Zhao, Y., Meng, T., & Shah, S. P. (2015). The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test. Construction and Building Materials, 95, 721–735. https://doi.org/10.1016/j.conbuildmat.2015.07.089
  • Zhang, H., Zhao, Y., Meng, T., & Shah, S. P. (2016). Surface treatment on recycled coarse aggregates with nanomaterials. Journal of Materials in Civil Engineering, 28(2), 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001368
  • Zhan, B. J., Xuan, D. X., Zeng, W., & Poon, C. S. (2019, Nov). Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete. Cement and Concrete Composites, 104, 103360. https://doi.org/10.1016/j.cemconcomp.2019.103360
  • Zhao, H., Wang, Y., & Liu, F. (2017, Jul). Stress–strain relationship of coarse RCA concrete exposed to elevated temperatures. Magazine of Concrete Research, 69(13), 649–664. https://doi.org/10.1680/jmacr.16.00333
  • Zheng, Y., Zhuo, J., & Zhang, P. (2021, Oct). A review on durability of nano-SiO2 and basalt fiber modified recycled aggregate concrete. Construction and Building Materials, 304, 124659. https://doi.org/10.1016/J.CONBUILDMAT.2021.124659
  • Zhou, Y., Gao, H., Hu, Z., Qiu, Y., Guo, M., Huang, X., & Hu, B. (2021). Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: Steel/FRP composite bars. Construction and Building Materials, 269(xxxx), 121264. https://doi.org/10.1016/j.conbuildmat.2020.121264
  • Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387