539
Views
0
CrossRef citations to date
0
Altmetric
CIVIL ENGINEERING

On the placement of a wave manipulator suitable for energy harnessing in the Nearshore

Article: 2124636 | Received 26 May 2022, Accepted 10 Sep 2022, Published online: 26 Sep 2022

References

  • Akylas, T. R., & Mei, C. C. (2001-2014). MIT open courseware - modules on waves in fluids. Massachusetts Institute of Technology.
  • Allsop, W., Bruce, T., Alderson, J., Ferrante, V., Russo, V., Vicinanza, D., & Kudella, M., (2014), Large scale tests on a generalized oscillating water column wave energy convertor, Proceedings of the HYDRALAB IV Joint User Meeting, Lisbon https://hydralab.eu/uploads/proceedings/TA-FZK-02.pdf.
  • Annette Kristin Brask (2015), Control and estimation of wave energy convertors, Master Thesis, Norwegian University of Science and Technology (NTNU), Trondheim.
  • Barstow, S., Mørk, G., Lønseth, L., & Mathisen, J. P. (2009). WorldWaves wave energy resource assessments from the deep ocean to the coast. In Proc. 8th European Wave and Tidal Energy Conference (pp. 149–23). Uppsala University, Sweden.
  • Basco, D. R., & Yamashita, T., (1987) Toward a simple model of the wave breaking transition region in surf zones, 20th International Conference on Coastal Engineering, 9-14 Nov. 1987, Taipei, Taiwan (1987 American Society of Civil Engineers).
  • Camilla Thomson, R., Chick, J. P., & Harrison, G. P. (2018). An LCA of the Pelamis wave energy convertor. The International Journal of Life Cycle Assessment, 24(1), 51–63. https://doi.org/10.1007/s11367-018-1504-2
  • Chang, P., Melville, W. K., & Miles, J. W. (1979). On the evolution of a solitary wave in a gradually varying channel. Journal of Fluid Mechanics, 95(3), 401–414. https://doi.org/10.1017/S002211207900152X
  • Coe, R. G., Bacelli, G., & Forbush, D. (2021). A practical approach to wave energy modelling and control. Renewable and Sustainable Energy Reviews, Elsevier, 142, 110791 – (1–11). https://doi.org/10.1016/j.rser.2021.110791.
  • Elgar, S., Guza, R. T., & Seymour, R. J. (1985). Wave group statistics from numerical simulations of a random sea. Applied Ocean Research, 7-2(2), 93–96. https://doi.org/10.1016/0141-1187(85)90039-2
  • Eriksson, M., Isberg, J., & Leijon, M. (2005). Hydrodynamic modelling of a direct drive wave energy convertor. International Journal of Engineering Science, Elsevier, 43(17–18), 1377–1387. https://doi.org/10.1016/j.ijengsci.2005.05.014
  • Eriksson, M., Waters, R., Svensson, O., Isberg, J., & Leijon, M. (2007). Wave power absorption: Experiments in open sea and simulation. Journal of Applied Physics, AIP, 102(8), 84910. https://doi.org/10.1063/1.2801002
  • Felix, A., Hernández-Fontes, J. V., Lithgow, D., Mendoza, E., Posada, G., Ring, M., & Silva, R. (2019). Wave energy in tropical regions: Deployment challenges, environmental and social perspectives. Journal of Marine Science and Engineering, MDPI, 7(7), 219–239. https://doi.org/10.3390/jmse7070219
  • Gabriel Rueda-Bayona, J., Guzmán, A., & José Cabello Eras, J. (2020). Selection of JONSWAP spectra parameters during water-depth and sea-state transitions. Journal of Waterway, Port, Coastal, Ocean Engineering, ASCE, 146-6(6), 04020038 - (1–13). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000601
  • Halder, P., Hyung Rhee, S., & Samad, A. (2017). Numerical optimization of wells turbine for wave energy extraction. International Journal of Naval Architecture and Ocean Engineering, 9(1), 11–24. https://doi.org/10.1016/j.ijnaoe.2016.06.008
  • Hansen, J. B. (1990). Periodic waves in the surf zone: Analysis of experimental data. Coastal Engineering, 14(1), 14–41. https://doi.org/10.1016/0378-3839(90)90008-K
  • Hong, Y., Waters, R., Boström, C., Eriksson, M., Engström, J., & Leijon, M. (2014). Review on electrical control strategies for wave energy converting systems. Renewable and Sustainable Energy Reviews, Elsevier, 31, 329–342. https://doi.org/10.1016/j.rser.2013.11.053
  • Ibrahim, W. I., Mohamed, M. R., Ismail, R. M. T. R., Leung, P. K., Xing, W. W., & Shah, A. A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, Elsevier, 7, 2021–2042. https://doi.org/10.1016/j.egyr.2021.04.003
  • Jagath-Kumara, K. D. R., & Dias, D. D. (2015). Near shore wave manipulation for electricity generation. WASET International Journal of Energy and Power Engineering, 9(7), 683–692 https://publications.waset.org/energy-and-power-engineering.
  • Jagath-Kumara, K. D. R., Dias, D. D., Nawagamuwa, R. L., & Weerasinghe, W. M. A. R. (2018). Wave energy enhancement for nearshore electricity generation. ENGINEER, Journal of the Institution of Engineers, Sri Lanka, LI(2), 43–52. https://doi.org/10.4038/engineer.v51i2.7294
  • Kaselimi, M., & Delikaraoglou, D. 2018 Estimating the prospects of wave energy potential in Eastern Mediterranean using multi-mission satellite altimeter data In Quod Erat Demonstrandum – In quest of the ultimate geodetic insight”, Honorary volume dedicated to Professor Emeritus A. Dermanis, School of Rural and Surveying Engineering. University of Thessaloniki Greece Eds.A. Fotiou & D. Rossikopoulos, Ziti Publiser, Thessaloniki 221–238.
  • Lejerskog, E., Bostrom, C., Hai, L., Waters, R., & Leijon, M. (2015). Experimental results on power absorption from a wave energy convertor at the Lysekil wave energy research site. Renewable Energy, Elsevier, 77, 9–14. https://doi.org/10.1016/j.renene.2014.11.050
  • Maliyadda, S. D. K., Wijeratne, W. M. C. R., Zoysa, S. R. L. M., Dias, D. D., & Jagath-Kumara, K. D. R., (2014), Manipulation of near-shore sea waves for electricity generation: Modelling a wave concentrator, in Proc. 5th International Conference on Sustainable Built Environment, ICSBE 2014, Kandy, Sri Lanka, vol. 3 (https://www.icsbe.org), p. 206–216, 12-14 December.
  • Mehlum, E. 1986 TAPCHAN In: Evans D. V., de Falcao A. F. O. Hydrodynamics of Ocean Wave Energy Utilization . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82666-5_3.
  • Parmeggiani, S., Peter Kofoed, J., & Friis-Madsen, E. (2013). Experimental study related to the mooring design for the 1.5 MW wave dragon WEC demonstrator at danWEC. Energies, MDPI, 6(4), 1863–1886. https://doi.org/10.3390/en6041863
  • Peter Kofoed, J., Frigaard, P., Friss-Madsen, E., Chr, H., & Sorensen. (2006). Prototype testing of the wave energy convertor wave dragon. Renewable Energy, Elsevier, 31-2(2), 181–189. https://doi.org/10.1016/j.renene.2005.09.005
  • Ringwood, J. (2008), “Practical challenges in harvesting wave energy”, ECOR Symposium, St. John’s, Newfoundland, Vol. 5.
  • Robert, A. D. Water Wave Propagation in Jettied Channels 19716. Centre for Applied Research, Department of Civil Engineering, University of Delaware.
  • Sandberg, A. B., Klementson, E., Muller, G., Andres, A. D., Maillet, J. (2016) Critical factors influencing viability of wave energy convertors in off-grid luxury resorts and small utilities Sustainability, 8(12), 1274. https://doi.org/10.3390/su8121274
  • Sjokvist, L., Krishna, R., Rahm, M., Castellucci, V., Hagnestal, A., & Leijon, M. (2014). On the optimization of point absorber buoys. Journal of Marine Science and Engineering, MDPI, 2(2), 477–492. https://doi.org/10.3390/jmse2020477
  • Svendsen, A. Hydrodynamics of the surf zone. Centre for Applied Coastal Research. University of Delaware, Newark DE 19716, U. S. A.
  • Svendsen, I. A. (1983). Wave heights and set-up in a surf zone. Coastal Engineering, 8(4), 303–330. https://doi.org/10.1016/0378-3839(84)90028-0
  • Svendsen, I. A., Madsen, P. A., & Buhr Hanson, J. Ch. 29: Wave characteristics in the surf zone Building 115. Institute of Hydrodynamics and Hydraulic Engineering (ISVA), Technical University of Denmark DK-2800.
  • Svendson, Ib. A. (2006). Introduction to Nearshore Hydrodynamics. World Scientific Publishing Co. Pte. Ltd.
  • Watabe, T. (2008). Utilization of the ocean wave energy. Fuji Print Press Co. Ltd.