1,738
Views
0
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

The water hammer in the long-distance steam supply pipeline: a computational fluid dynamics simulation

, , , , , , & show all
Article: 2127472 | Received 02 Apr 2022, Accepted 19 Sep 2022, Published online: 28 Sep 2022

References

  • Allievi, L. (1925). Theory of water-hammer. Typography R. Garroni.
  • Ansys, I. (2018). ANSYS fluent user’s guide, release 19.0. ANSYS Inc, Canonsburg.
  • Bergant, A., Simpson, A. R., & Tijsseling, A. S. (2006). Water hammer with column separation: A historical review. Journal of Fluids and Structures, 22(2), 135–17. https://doi.org/10.1016/j.jfluidstructs.2005.08.008
  • Beuthe, T. (1997). Review of two-phase water hammer. Proceedings of the Annual Conference-Canadian Nuclear Society, Canadian Nuclear Association.
  • Boran, Z., Wuyi, W., & Mengshan, S. (2018). Experimental and numerical simulation of water hammer in gravitational pipe flow with continuous air entrainment. Water, 10(7), 928. https://doi.org/10.3390/w10070928
  • Cai, S., Li, Q., Liu, C., & Zhou, Y. (2020). Evaporation of R32/R152a mixtures on the Pt surface: A molecular dynamics study. International Journal of Refrigeration, 113(1), 156–163. https://doi.org/10.1016/j.ijrefrig.2020.02.007
  • Chaudhry, M. (2014). Applied hydraulic transients. Springer
  • Chen, T., Ren, Z., Xu, C., & Loxton, R. (2015). Optimal boundary control for water hammer suppression in fluid transmission pipelines. Computers & Mathematics with Applications, 69(4), 275–290. https://doi.org/10.1016/j.camwa.2014.11.008
  • Dudlik, A., & Prasser, H. M. (2009). Water hammer and condensation hammer scenarios in power plants using new measurement system. Forschung im Ingenieurwesen, 73(2), 67–76. https://doi.org/10.1007/s10010-009-0100-9
  • Gruel, R. L., Huber, P. W., & Hurwitz, W. M. (1981). Piping response to steam-generated water hammer. Journal of Pressure Vessel Technology, 103(3), 219–225. https://doi.org/10.1115/1.3263394
  • Gulawani, S. S., Joshi, J. B., Shah, M. S., Ramaprasad, C. S., & Shukla, D. S. (2006). CFD analysis of flow pattern and heat transfer in direct contact steam condensation. Chemical Engineering Science, 61(16), 5204–5220. https://doi.org/10.1016/j.ces.2006.03.032
  • Hu, J., Liu, C., Li, Q., & Shi, X. (2018). Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. International Journal of Heat and Mass Transfer, 125, 1345–1348. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.162
  • Hu, J., Liu, C., Liu, L., & Li, Q. (2018). Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: A molecular simulation study. Materials, 11(7), 1164. https://doi.org/10.3390/ma11071164
  • Jeon, S. S., Kim, S. J., & Park, G. C. (2011). Numerical study of condensing bubble in subcooled boiling flow using volume of fluid model. Chemical Engineering Science, 66(23), 5899–5909. https://doi.org/10.1016/j.ces.2011.08.011
  • Joukowski, N. (1898). Memoirs of the imperial academy society of St. Petersburg. Proceedings of the American Water Works Association, 24, 341–424
  • Keramat, A., Duan, H.-F., Pan, B., & Hou, Q. (2022). Gradient-based optimization for spectral-based multiple-leak identification. Mechanical Systems and Signal Processing, 171, 108840. https://doi.org/10.1016/j.ymssp.2022.108840
  • Khamoushi, A., Keramat, A., & Majd, A. (2020). One-dimensional simulation of transient flows in non-newtonian fluids. Journal of Pipeline Systems Engineering and Practice, 11(3), 04020019. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000454
  • Kothandaraman, C. P., & Subramanyan, S. (2008). Fundamentals of heat and mass transfer. New Age International.
  • Kubrak, M., Malesińska, A., Kodura, A., Urbanowicz, K., Bury, P., & Stosiak, M. (2021). Water hammer control using additional branched HDPE pipe. Energies, 14(23), 8008. https://doi.org/10.3390/en14238008
  • Liu, L., Li, Q., Ju, F., Dong, X., & Yu, X. (2019). Numerical simulation and analysis of the vertical and double pipe soil - air heat exchanger. Thermal Science, 23(6 Part B), 3905–3916. https://doi.org/10.2298/TSCI170730001L
  • Morales-Rodriguez, R. (2012). Thermodynamics - fundamentals and its application in science. Books on Demand
  • Patel, G., Tanskanen, V., & Kyrki-Rajamki, R. (2014). Numerical modelling of low-Reynolds number direct contact condensation in a suppression pool test facility. Annals of Nuclear Energy, 71, 376–387. https://doi.org/10.1016/j.anucene.2014.04.009
  • Peng, T., Li, Q., & Liu, C. (2016). Accelerated aqueous nano-film rupture and evaporation induced by electric field: A molecular dynamics approach. International Journal of Heat and Mass Transfer, 94, 39–48. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.053
  • Peng, T., Li, Q., Xu, L., He, C., & Luo, L. (2017). Surface interaction of nanoscale water film with SDS from computational simulation and film thermodynamics. Entropy, 19(11), 620. https://doi.org/10.3390/e19110620
  • Riasi, A., & Tazraei, P. (2017). Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves. Renewable Energy, 107, 138–146. https://doi.org/10.1016/j.renene.2017.01.046
  • Shah, A., Chughtai, I. R., & Inayat, M. H. (2010). Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water. Chinese Journal of Chemical Engineering, 18(4), 577–587. https://doi.org/10.1016/S1004-9541(10)60261-3
  • Tang, J., Zhang, Q., Zhang, Z., Li, Q., Wu, C., & Wang, X. (2022). Development and performance assessment of a novel combined power system integrating a supercritical carbon dioxide Brayton cycle with an absorption heat transformer. Energy Conversion and Management, 251, 114992. https://doi.org/10.1016/j.enconman.2021.114992
  • Tian, W., Xiao, Z., Xiao, Z., & Xiao, Z. (2008). Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system. Annals of Nuclear Energy, 35(12), 2280–2287. https://doi.org/10.1016/j.anucene.2008.08.012
  • Urbanowicz, K., Stosiak, M., Towarnicki, K., & Bergant, A. (2021). Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system. Engineering Failure Analysis, 128, 105607. https://doi.org/10.1016/j.engfailanal.2021.105607
  • Wang, L., Yue, X., Chong, D., Chen, W., & Yan, J. (2018). Experimental investigation on the phenomenon of steam condensation induced water hammer in a horizontal pipe. Experimental Thermal and Fluid Science, 91, 451–458. https://doi.org/10.1016/j.expthermflusci.2017.10.036
  • Welch, S. W. J., & Wilson, J. (2000). A volume of fluid based method for fluid flows with phase change. Journal of Computational Physics, 160(2), 662–682. https://doi.org/10.1006/jcph.2000.6481
  • Wood, F. (1937). The application of heaviside’s operational calculus to the solution of problems in water hammer. Trans ASME, 59, 707–713.
  • Wu, C., Xu, X., Li, Q., Li, X., Liu, L., & Liu, C. (2021). Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle. Energy Conversion and Management, 227, 113562. https://doi.org/10.1016/j.enconman.2020.113562
  • Wu, C., Xu, X., Li, Q., Li, J., Wang, S., & Liu, C. (2020). Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery. Energy Conversion and Management, 207, 112527. https://doi.org/10.1016/j.enconman.2020.112527
  • Xu, J., Xie, J., He, X., Cheng, Y., & Liu, Q. (2017). Water drop impacts on a single-layer of mesh screen membrane: Effect of water hammer pressure and advancing contact angles. Experimental Thermal and Fluid Science, 82, 83–93. https://doi.org/10.1016/j.expthermflusci.2016.11.006
  • Zaltsgendler, E., Tahir, A., & Leung, R. K. (1996). Condensation-induced water hammer in a vertical upfill pipe. Transactions of the American Nuclear Society.
  • Zhang, H., Liu, C., Xu, X., & Li, Q. (2017). Mechanism of thermal decomposition of HFO-1234yf by DFT study. International Journal of Refrigeration, 74, 397–409. https://doi.org/10.1016/j.ijrefrig.2016.10.020
  • Zhou, Y., Li, Q., & Wang, Q. (2019). Energy storage analysis of UIO-66 and water mixed nanofluids: An experimental and theoretical study. Energies, 12(13), 2521. https://doi.org/10.3390/en12132521