778
Views
3
CrossRef citations to date
0
Altmetric
COMPUTER SCIENCE

Gastrointestinal tract disease recognition based on denoising capsule network

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2142072 | Received 01 Sep 2022, Accepted 27 Oct 2022, Published online: 11 Nov 2022

References

  • Afriyie, Y., Weyori, B. A., & Opoku, A. A. (2021). Exploring optimised capsule network on complex images for medical diagnosis. 2–17. https://ieeexplore.ieee.org/abstract/document/9682081
  • Akram, T., Attique, M., Muhammad, K., & Mussarat, S. (2018). Skin lesion segmentation and recognition using multichannel saliency estimation and m-svm on selected serially fused features. Journal of Ambient Intelligence and Humanized Computing, https://doi.org/10.1007/s12652-018-1051-5
  • Asperti, A., & Mastronardo, ca. 2018. “The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images.” BIOIMAGING 2018 - 5th international conference on bioimaging, proceedings; part of 11th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2018 2: 199–205. https://doi.org/10.5220/0006730901990205.
  • Ayidzoe, M. A., Yongbin, Y., Kwabena, P., Jingye, M., Kwabena, C., & Yifan, A. (2021). Gabor capsule network with preprocessing blocks for the recognition of complex images. Machine Vision and Applications, 123. https://doi.org/10.1007/s00138-021-01221-6
  • Bretthauer, M. (2011). Colorectal Cancer Screening. Journal of Internal Medicine, 270(2), 87–98. https://doi.org/10.1111/j.1365-2796.2011.02399.x
  • Byrne, M. F., Chapados, N., Soudan, F., Oertel, C., Linares Pérez, M., Kelly, R., Iqbal, N., Chandelier, F., & Rex, D. K. (2019a). Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut, 68(1), 94–100. https://gut.bmj.com/content/68/1/94.abstract
  • Byrne, M. F., Chapados, N., Soudan, F., Oertel, C., Linares Pérez, M., Kelly, R., Iqbal, N., Chandelier, F., & Rex, D. K. (2019b). Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. https://doi.org/10.1136/gutjnl-2017-314547
  • Campus, W., Road, M., & Engineering, C. (2018). Automated Ulcer and Bleeding Classification from Wce Images Using Multiple Features Fusion and Selection. 18(4), 1–25. https://doi.org/10.1142/S0219519418500380
  • Chang, Y., & Chen, W. (2019). Gastrointestinal tract diseases detection with deep attention neural network. 2568–2572. https://doi.org/10.1145/3343031.3356061
  • Chang, S., & Liu, J. I. N. (2020). Multi-lane capsule network for classifying images with complex background. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2990700
  • Gao, B., & Pavel, L. (n.d.). On the properties of the softmax function with application in game theory and reinforcement learning. 1–10. https://arxiv.org/abs/1704.00805
  • Ghatwary, N., Ye, X., & Zolgharni, M. (2019). Esophageal abnormality detection using densenet based faster R-CNN With Gabor Features. IEEE Access, 7, 84374–84385. https://doi.org/10.1109/ACCESS.2019.2925585
  • Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., Ohnishi, T., Fujishiro, M., Matsuo, K., Fujisaki, J., & Tada, T. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21(4), 653–660. https://doi.org/10.1007/s10120-018-0793-2
  • Itoh, T., Kawahira, H., Nakashima, H., Yata, N., Kawahira, H., & Medical Engineering, F. (2018). Deep learning analyzes helicobacter pylori infection by upper gastrointestinal endoscopy images. 4–9. https://doi.org/10.1055/s-0043-120830
  • JangHyung, L., Young Jae, K., Yoon Woo, K., Sungjin, P., Youn-i, C., Yoon Jae, K., Dong Kyun, P., Kwang Gi, K., & Jun-Won, C. (2019). Spotting MALIGNANCIES FROM GASTRIC ENDOSCOPIC IMAGES USING DEEP LEARNING. Surgical Endoscopy. https://doi.org/10.1007/s00464-019-06677-2
  • Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: a classification perspective. Cambridge University Press. https://doi.org/10.5555/1964882
  • Kahsaygebreslassie, A., Yaecobgirmaygezahegn, Tsighe Hagos, M., Achimibenthal, & Pooja, 2019. “Automated gastrointestinal disease recognition for endoscopic images.” Proceedings - 2019 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2019. January 312–316. https://doi.org/10.1109/ICCCIS48478.2019.8974458.
  • Khan, M. A., Akram, T., Sharif, M., Ahmad, S., & Bukhari, C. (2020). An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection. 15929–15948. https://doi.org/10.1007/s00521-019-04514-0
  • Khan, M. A., Lali, I. U., Rehman, A., Ishaq, M., Sharif, M., & Saba, T. (2019). “brain tumor detection and classification : a framework of marker-based watershed algorithm and Multilevel priority features selection,” no. October, 909–922. https://doi.org/10.1002/jemt.23238
  • Khan, M. A., Rubab, S., Kashif, A., Imran, M., Muhammad, N., Hussain, J., Zhang, Y.-D., & Chandra, S. (2020). Lungs cancer classification from CT Images : An integrated design of contrast based classical features fusion and selection. Pattern Recognition Letters, 129, 77–85.
  • Khan, M. A., Sharif, M., Akram, T., Ahmad Chan Bukhari, S., & Sunder Nayak, R. (2020). Developed newton-raphson based deep features selection framework for skin lesion recognition. Pattern Recognition Letters, 129, 293–303. https://doi.org/10.1016/j.patrec.2019.11.034
  • Khan, M. A., Sharif, M., Akram, T., Yasmin, M., & Sunder Nayak, R. (2019). Stomach deformities recognition using rank-based deep features selection. Journal of Medical Systems, 43(12). https://doi.org/10.1007/s10916-019-1466-3
  • Komeda, Y., Handa, H., Watanabe, T., Nomura, T., Kitahashi, M., Sakurai, T., Okamoto, A. (2017). Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology (Switzerland), 93(1), 30–34. https://doi.org/10.1159/000481227
  • Krizhevsky, A. 2009. “Learning multiple layers of features from tiny images. http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
  • Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: A better measure than accuracy in comparing learning algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2671, 329–341. https://doi.org/10.1007/3-540-44886-1_25
  • Maeda, Y., Kudo, S.-E., Mori, Y., Misawa, M., Ogata, N., Sasanuma, S., Wakamura, K., Oda, M., Mori, K., & Ohtsuka, K. (2019). Fully automated diagnostic system with arti fi cial intelligence using endocytoscopy to identify the presence of histologic in fl ammation associated with ulcerative colitis (with Video). Gastrointestinal Endoscopy, 89(2), 408–415. https://doi.org/10.1016/j.gie.2018.09.024
  • Matthews, B. W. (1975). Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. BBA - Protein Structure, 405(2), 442–451. https://doi.org/10.1016/0005-2795(75)90109-9
  • Mensah, P., Asubam, B., & Abra, A. (2020). Exploring the Performance of LBP-capsule networks with k-means routing on complex images. In Journal of King Saud University - Computer and Information Sciences (pp. 2574–2588). https://doi.org/10.1016/j.jksuci.2020.10.006
  • Mossotto, E., Ashton, J. J., Coelho, T., Beattie, R. M., Macarthur, B. D., & Ennis, S. (2017). Classification of paediatric inflammatory bowel disease using machine learning. Scientific reports. https://doi.org/10.1038/s41598-017-02606-2
  • Nasir, M., Attique, M., Ullah, I., Tanzila, L., Tassawar, S., & Sharif, M. (2018). An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. no. December 2017. Microscopy research and technique. https://doi.org/10.1002/jemt.23009
  • Orchard, J., Ebrahimi, M., Wong, A., & Canada, N. (2008). Efficient nonlocal-means denoising using the SVD University of waterloo Cheriton school of computer science, 2 Dept . of Applied Mathematics, 3 Systems Design Engineering Dept . Design Engineering, 1732–1735. https://ieeexplore.ieee.org/abstract/document/4712109
  • Ozawa, T., Ishihara, S., & Fujishiro, M. (2018) Novel Computer-Assisted Diagnosis System for Endoscopic Disease Activity in Patients with Ulcerative Colitis. Gastrointestinal Endoscopy. https://doi.org/10.1016/j.gie.2018.10.020
  • Pogorelov, K., De Lange, T., Johansen, D., Thelin Schmidt, P., Riegler, M., Lux, M., & Halvorsen, P. (n.d.). Kvasir : A multi-class image dataset for computer aided gastrointestinal disease detection. https://dl.acm.org/doi/abs/10.1145/3083187.3083212
  • Poudel, S., & Woong Lee, S. (2021). Deep Multi-Scale Attentional features for medical image segmentation. Applied Soft Computing, 109, 107445. https://doi.org/10.1016/j.asoc.2021.107445
  • Provost, F., Fawcett, T., & Kohavi, R. 1998. “The case against accuracy estimation for comparing induction algorithms.” International Conferenceon Machine Learning, 445.
  • Sara, S., Frosst, N., & Hinton, G. E. (2017, December). Dynamic Routing between Capsules. Advances in Neural Information Processing Systems, Nips, 3857–3867. https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
  • Sharif, M., Attique Khan, M., Rashid, M., Yasmin, M., Afza, F., John Tanik, U., Sharif, M., Attique Khan, M., & Rashid, M. (2021). Deep CNN and Geometric Features-Based Gastrointestinal Tract Diseases Detection and Classification from Wireless Capsule Endoscopy Images. Journal of Experimental & Theoretical Artificial Intelligence, 33(4), 577–600. https://doi.org/10.1080/0952813X.2019.1572657
  • Sharif, M. I., Jian Ping, L., Attique Khan, M., & Asim Saleem, M. (2019) Active Deep Neural Network Features Selection for Segmentation and Recognition of Brain Tumors Using MRI Images. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2019.11.019
  • Shees, N., Atif Tahir B, M., Sadiq, S., Naqvi, A., & Zaid, M. (2018). Ensemble of texture and deep learning features for finding abnormalities in the gastro-intestinal tract. Springer International Publishing. https://doi.org/10.1007/978-3-319-98446-9
  • Shichijo, S., Nomura, S., Aoyama, K., Nishikawa, Y., Miura, M., Shinagawa, T., Takiyama, H., Tanimoto, T., Ishihara, S., Matsuo, K., & Tada, T. (2017). Application of convolutional neural networks in the diagnosis of Helicobacter Pylori infection based on endoscopic images. EBioMedicine, 25, 106–111. https://doi.org/10.1016/j.ebiom.2017.10.014
  • Siegel, R. L., Fedewa, S. A., Anderson, W. F., Miller, K. D., Jiemin, M., Rosenberg, P. S., & Jemal, A. (2017). Colorectal Cancer Incidence Patterns in the United States, 1974-2013. Journal of the National Cancer Institute, 109(8), 27–32. https://doi.org/10.1093/jnci/djw322
  • Singla, P., & Domingos, P. 2005. “Discriminative training of Markov logic networks.” Proceedings of the National Conference on Artificial Intelligence 2: 868–873.
  • Sokolova, M. (n.d.). Beyond Accuracy, F-Score and ROC : A family of discriminant measures for performance evaluation. https://doi.org/10.1007/11941439_114
  • Takiyama, H., Ozawa, T., Ishihara, S., Fujishiro, M., de Alcantara, B. N., Araujo, F. M. C., Queiroz, M. G. L., Cruz, A. C. R., Vasconcelos, B. H. B., Chiang, J. O., Martins, L. C., Casseb, L. M. N., da Silva, E. V., Carvalho, V. L., Vasconcelos, B. C. B., Rodrigues, S. G., Oliveira, C. S., Quaresma, J. A. S., & Vasconcelos, P. F. C. (2018). Automatic Anatomical Classification of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks. Scientific Reports, 8(April), 1–8. https://doi.org/10.1038/s41598-018-25842-6
  • Taruna, A., Rahul, G., & Shrikanth, N. 2019. “ON EVALUATING CNN REPRESENTATIONS FOR LOW RESOURCE MEDICAL IMAGE CLASSIFICATION Taruna Agrawal, Rahul Gupta, Shrikanth Narayanan Signal Analysis and Interpretation Lab, University of Southern California.” ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1363–1367.
  • Vokes, E. E., Weichselbaum, R. R., Lippman, S. M., & Ki Hong, W. (1993). The New England journal of medicine . no other uses without permission. copyright © 1993 Massachusetts medical society. all rights reserved. The New England Journal of Medicine, 29(328 (17), 1230–1235. https://doi.org/10.1056/NEJM195205222462101
  • Vollgraf, R. (n.d.). Fashion-MNIST : A novel image dataset for benchmarking machine learning algorithms. 1–6. https://arxiv.org/abs/1708.07747
  • Wimmer, G., Vécsei, A., Häfner, M., & Uhl, A. (2018). Fisher Encoding of Convolutional Neural Network Features for Endoscopic Image Classification. Journal of Medical Imaging, 5(3), 1. https://doi.org/10.1117/1.jmi.5.3.034504
  • Xiong, Y., Guiping, S., Shiwe, Y., Sun, Y., & Sun, Y. (2019) Deeper Capsule Network For Complex Data. July, 1–8. https://ieeexplore.ieee.org/iel7/8840768/8851681/08852020.pdf
  • Yuan, Y., Baopu, L., & Meng, M. Q. (2016). Improved bag of feature for automatic polyp detection in wireless capsule endoscopy images. 13(2), 529–535. https://ieeexplore.ieee.org/iel7/8856/7447676/07052426.pdf
  • Yuan, Y., & Meng, M. Q. (2014). Polyp classification based on bag of features and saliency in wireless capsule endoscopy *. 3930–3935. https://ieeexplore.ieee.org/abstract/document/6907429
  • Zhang, X., Chen, F., Yu Id, T., Jiye, A., Huang, Z., Jiquan Liu, I., Weiling, H., Wang, L., Duan, H., & Jianmin, S. (2019). Real-time gastric polyp detection using convolutional neural networks. 1–16. https://doi.org/10.1371/journal.pone.0214133
  • Zhang, R., Zheng, Y., Wing Chung Mak, T., Ruoxi, Y., Wong, S. H., Lau, J. Y. W., & Poon, C. C. Y. (2017). Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, 21(1), 41–47. https://ieeexplore.ieee.org/abstract/document/7769237