1,764
Views
0
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Nanomaterials in 2-dimensions for flexible solar cell applications – a review

ORCID Icon, , , , , , , , , & show all
Article: 2143034 | Received 09 May 2022, Accepted 28 Oct 2022, Published online: 06 Dec 2022

References

  • Agyei-Tuffour, B., Doumon, E., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Shen, Z., Petoukhoff, C. E., Zebaze Kana, M. G., O’Carroll, D. M., & Soboyejo, W. O. (2017). Pressure effects on interfacial surface contacts and performance of organic solar cells. Journal of Applied Physics, 122(20), 205501. https://doi.org/10.1063/1.5001765
  • Agyei-tuffour, B., Rwenyagila, E. <. C. S. $. A. I. C. <., Asare, J., Oyewole, O. <. C. S. $. A. I. C. <., Zebaze Kana, M. <. C. S. $. A. I. C. <., O’Carroll, D. <. C. S. $. A. I. C. <., & Soboyejo, W. <. C. S. $. A. I. C. <. (2016). Influence of Pressure on Contacts between Layers in Organic Photovoltaic Cells. In Advanced Materials ResearchW. O. Soboyejo (Vol. 1132. pp. 204–31). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.1132.204
  • Alam S, Asaduzzaman Chowdhury M, Shahid A, Alam R and Rahim A. (2021). Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem, 30, 100305. https://doi.org/10.1016/j.flatc.2021.100305
  • Baijua, K. G., Muralib, B., & Kumaresan, D. (2021). Ferroelectric barium titanate microspheres with superior light-scattering ability for the performance enhancements of flexible polymer dye sensitized solar cells and photodetectors. Solar Energy, 224, 93–101. https://doi.org/10.1016/j.solener.2021.05.063
  • Barpuzary, D., Kim, K., & Park, M. J. (2019). Two-Dimensional conducting polymers: Synthesis and charge transport. Journal of Polymer Science. Part B, Polymer Physics, 57(18), 1169–1176. https://doi.org/10.1002/polb.24777
  • Bichoutskaia, E., Popov, A. M., & Lozovik, Y. E. (2008). Nanotube-based data. Insight, 11, 38. https://doi.org/10.1016/S1369-7021(08)70120-2
  • Bräuer, G., Szyszka, B., Vergöhl, M., & Bandorf, R. (2010). Magnetron sputtering – Milestones of 30 years. Vacuum, 84(12), 1354–1359. https://doi.org/10.1016/j.vacuum.2009.12.014
  • Chen, Y.-H., Huang, K.-C., Chen, J.-G., Vittal, R., & Ho, K.-C. (2011). Titanium Flexible Photoanode Consisting of an Array of TiO2 Nanotubes Filled with a Nanocomposite of TiO2 and Graphite for Dye-Sensitized Solar Cells. Electrochimica Acta, 56(23), 7999–8004. https://doi.org/10.1016/j.electacta.2011.02.003
  • Critchey, L., N. Seymour (2022). Anew flexible solar cell approach with 2D Transition Metal dichalcogenides Electropages. www.electropages.com/blog/2022/01/new-flexible-solar-cell-approach-with-2d-transition-metal-dichalcogenides
  • Du, J., Zhang, D., Wang, X., Jin, H., Zhang, W., Tong, B., Liu, Y., Burn, P. L., Cheng, H. M., & Ren, W. (2021). Extremely efficient flexible organic solar cells with a graphene transparent anode: dependence on number of layers and doping of graphene. Carbon, 171(January), 350–358. https://doi.org/10.1016/j.carbon.2020.08.038
  • Fayaz, H., Shakeel, M., Pandey, A. K., Nasrudin, A., & Tyagi, V. V. (2019). A novel nanodiamond/zinc nanocomposite as potential counter electrode for flexible dye sensitized solar cell. Solar Energy, 197, 1–5. https://doi.org/10.1016/j.solener.2019.12.072
  • Gao, Z., Zhao, M., Zhuang, D., Fu, E., Li, X., Ouyang, L., Guo, L., Sun, R., Kimura, K., & Nakajima, K. (2015). Study on the performance of tungsten-titanium alloy film as a diffusion barrier for iron in a flexible CIGS solar cell. Solar Energy, 120, 357–362. https://doi.org/10.1016/j.solener.2015.07.027
  • Gerthoffer, A., Roux, F., Emieux, F., Faucherand, P., Fournier, H., Grenet, L., & Perraud, S. (2015). CIGS solar cells on flexible ultra-thin glass substrates: characterization and bending test. Thin Solid Films, 592, 99–104. https://doi.org/10.1016/j.tsf.2015.09.006
  • Guo, F., Azimi, H., Hou, Y., Przybilla, T., Hu, M., Bronnbauer, C., Langner, S., Spiecker, E., Forberich, K., & Brabec, C. J. (2015). High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 7(5), 1642–1649. https://doi.org/10.1039/c4nr06033d
  • Gurulakshmi, M. A. M., Susmitha, K., Charanadhar, N., & Srikanth, V. V. S. S. (2019). A Transparent and Pt-Free All-Carbon Nanocomposite Counter Electrode Catalyst for effi cient Dye Sensitized Solar Cells. Solar Energy, 193(August), 568–575. https://doi.org/10.1016/j.solener.2019.09.081
  • Hasan, M. (2018). M Antimicrobial Coatings for Textiles. Handbook of Antimicrobial Coatings, 321–355. https://doi.org/10.1016/B978-0-12-811982-2.00016-0
  • Hasan, M. A. M., Wang, Y., Bowen, C. R., & Yang, Y. (2021). 2D Nanomaterials for Effective Energy Scavenging. Nano-Micro letters, 13(1), 82. https://doi.org/10.1007/s40820-021-00603-9
  • Hecht, J. (2021). Perovskites: The hottest material in solar cells. Optics. https://www.laserfocusworld.com/optics/article/14213544/perovskites-the-hottest-material-in-solar-cells.
  • Hoang S et al . (2020). Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat Commun, 11(1), 10.1038/s41467-020-14816-w
  • Hong, J., Kim, M., & Cha, C. (2019). 17 - Multimodal Carbon Dots as Biosensors. Micro and Nano Technologies in Theranostic Bionanomaterials, 377–400. https://doi.org/10.1016/B978-0-12-815341-3.00017-1
  • Hou, C.-H., Shyue, -J.-J., Su, W.-F., & Tsai, F.-Y. (2018). Catalytic metal-induced crystallization of sol–gel metal oxides for high-efficiency flexible perovskite solar cells. Journal of Materials Chemistry A, 6(34), 16450–16457. https://doi.org/10.1039/C8TA05973J
  • Huang, Y., Pan, Y.H., Yang, R., Bao, L.H., Meng, L., Luo, H.L., Cai, Y.Q., Liu, G.D., Zhao, W.J., Zhou, Z., Wu, L.M., Zhu, Z.-L., Huang, M., Liu, L.W., Liu, L., Cheng, P., Wu, K.H., Tian, S.B., Gu, C.Z., Shi, Y.G., Guo, Y.F., Cheng, Z.G., Hu, J.P., Zhao, L., Yang, G.H., Sutter, E., Sutter, P., Wang, Y.L., Ji, W., Zhou, X.J & Gao, H.J., (2020). Universal mechanical exfoliation of large-area 2D crystals. Nat Commun 11, 2453. https://doi.org/10.1038/s41467-020-16266-w
  • Hung, K. H., Chan, C. H., & Wang, H. W. (2014). Flexible TCO-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti-Ti(III) acid solution. Renewable Energy, 66(June), 150–158. https://doi.org/10.1016/j.renene.2013.12.001
  • Ichwani, R., Uzonwanne, V., Huda, A., Koech, R., Oyewole, O. K., & Soboyejo, W. O. (2022). Adhesion in perovskite solar cell multilayer structures. ACS Applied Energy materials, 5(5), 6011–6018. https://doi.org/10.1021/acsaem.2c00430
  • IRENA. (2019). Global Energy Transformation: A Roadmap to 2050 (2019 Edition). International Renewable Energy Agency, 52. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
  • Jang, C. W., Kim, J. M., & Choi, S. H. (2019). Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode. Journal of Alloys and Compounds, 775, 905–911. https://doi.org/10.1016/j.jallcom.2018.https://doi.org/10.190
  • Jayenta Singh, T., Sumitra Singh, S., Islam, S. K. M., Get, R., Mahala, P., & Singh, K. J. (2019). Flexible organic solar cells with Graphene/PEDOT:PSS Schottky Junction on PET Substrates. Optik, 181(March), 984–992. https://doi.org/10.1016/j.ijleo.2018.12.179
  • Jiang, D., Liu, Z., Xiao, Z., Qian, Z., Sun, Y., Zeng, Z., & Wang, R. (2022). Flexible electronics based on 2D transition metal dichalcogenides. Journal of Materials Chemistry A, 10, 89. https://doi.org/10.1039/d1ta06741a1
  • Jin, J. J., Li, J., Tai, Q., Chen, Y., Mishra, D. D., Deng, W., Xin, J., Guo, S., Xiao, B., & Wang, X. (2021). Efficient and stable flexible perovskite solar cells based on graphene-agNWs substrate and carbon electrode without hole transport materials. Journal of Power Sources, 482(January), 228953. https://doi.org/10.1016/j.jpowsour.2020.228953
  • Kalita, G., Dzulsyahmi Shaarin, M., Paudel, B., Mahyavanshi, R., & Tanemura, M. (2017). Temperature dependent diode and photovoltaic characteristics of graphene-gan heterojunction. applied Physics Letters, 111(1), 013504. https://doi.org/10.1063/1.4992114
  • Kang, M. H., Prieto Lopez, L. O., Chen, B., Teo, K., Williams, J. A., Milne, W. I., & Cole, M. T. (2016). Mechanical robustness of graphene on flexible transparent substrates. ACS Applied Materials & Interfaces, 8, 22506–22515. https://doi.org/10.1021/acsami.6b06557
  • Kawano, Y., Chantana, J., Nishimura, T., Mavlonov, A., & Minemoto, T. (2020). Bismuth-doped Cu(In,Ga)Se2 Solar Cell on flexible stainless steel substrate: examination of bismuth-doping effectiveness under different substrate temperatures on photovoltaic performances. Solar Energy, 208, 20–30. https://doi.org/10.1016/j.solener.2020.07.076
  • Khan, S. A., & Rahman, A. (2019). Efficiency of thin film photovoltaic paint: A brief review. International Journal of Recent Technology and Engineering, 7(6), 163–169. https://doi.org/10.1039/C9DT01965K
  • Khan, A. S., Zain, M. Z., Mansoor, M., Hasan Mahfuz, M. M., Rahman, A., Rashid, M. A. N., & Rais, M. S. (2021). Performance Investigation of ZnO/PVA nanocomposite film for organic solar cell. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.197
  • Kim, H. S., Chang Ryul Lee, C. R., Hyeok, I. J., Beom, L.-K., Moehl, T., Marchioro, A., & Moon, S.-J. (2012). Lead iodide perovskite sensitizedall-solid-state submicron thin film mesoscopic solar cell with efficiencyExceeding 9%. Scientific Reports, 2(1), 591. https://doi.org/10.1038/srep00591
  • Kim, S., Lee, H. S., Kim, J. M., Seo, S. W., Kim, J. H., Jang, C. W., & Choi, S. H. (2018). Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes. Journal of Alloys and Compounds, 744(May), 404–411. https://doi.org/10.1016/j.jallcom.2018.02.136
  • Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., & Lee, S. M. (2020). Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule, 4(5), 1021–1034. https://doi.org/10.1016/j.joule.2020.02.012
  • Kranz, L., Gretener, C., Perrenoud, J., Schmitt, R., Pianezzi, F., Mattina, F.-L., & Fella, C. M. (2013). Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 4(2306). https://doi.org/10.1038/ncomms3306
  • Krishnamoorthy K, Pazhamalai P, Veerasubramani G Kumar and Kim S Jae. (2016). Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. Journal of Power Sources, 321 112–119. 10.1016/j.jpowsour.2016.04.116
  • Kumar, P., & Chand, S. (2012). Recent progress and future aspects of organic solar cells. progress in Photovoltaics: research and Applications, 20(6), 377–415. https://doi.org/10.1002/pip
  • Kumar, D. K., Suazo-Davila, D., García-Torres, D., Cook, N. P., Ivaturi, A., Hsu, M. H., & Martí, A. A. (2019). Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochimica Acta, 305(May), 278–284. https://doi.org/10.1016/j.electacta.2019.03.040
  • Lee J et al . (2014). Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 344(6181), 286–289. 10.1126/science.1252268
  • Lee, H.-F., Chua, Y.-T., Yang, S.-M., Hsu, P.-Y., Ouyang, F. Y., Tung, Y.-L., & Kai, -J.-J. (2013). Efficient, stable, and flexible dye-sensitized solar cells based on nanocomposite gel electrolytes. Thin Solid Films, 547, 3–8. https://doi.org/10.1016/j.tsf.2013.03.091
  • Lee, J. W., Dai, Z., Han, T. H., Choi, C., Chang, S. Y., Lee, S.-J., De Marco, N., Zhao, H., Sun, P., Huang, Y., & Yang, Y. (2018). 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. nature Communications, 9(1), 3021. https://doi.org/10.1038/s41467-018-05454-4
  • Lee, C.-P., Lai, K.-Y., Lin, C.-A., Li, C.-T., Ho, K.-C., Wu, C.-I., Lau, S.-P., & He, J.-H. (2017). A Paper-Based Electrode Using a Graphene Dot/PEDOT:PSS Composite for Flexible Solar Cells. Nano Energy, 36(2211–2855), 260–267. https://doi.org/10.1016/j.nanoen.2017.04.044
  • Lee, S., Yeo, J. S., Ji, Y., Cho, C., Kim, D. Y., Na, S.-I., Lee, B. H., & Lee, T. (2012). Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 23(34), 34. https://doi.org/10.1088/0957-4484/23/34/344013
  • Li, C., Cong, S., Tian, Z., Song, Y., Yu, L., Lu, C., Shao, Y., Li, J., Zou, G., Rümmeli, M. H., Dou, S., Sun, J., & Liu, Z. (2019). Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 60 247–256. https://doi.org/10.1016/j.nanoen.2019.03.061
  • Liu, W.-S., Hu, H.-C., Pu, N.-W., & Liang, S. C. (2015). Developing flexible CIGS solar cells on stainless steel substrates by using Ti/TiN composite structures as the diffusion barrier layer. Journal of Alloys and Compounds, 631, 146–152. https://doi.org/10.1016/j.jallcom.2014.12.189
  • Liu, Z., You, P., Xie, C., Tang, G., & Yan, F. (2016). Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 28(October), 151–157. https://doi.org/10.1016/j.nanoen.2016.08.038
  • Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., Tian, Y., Deng, Y., Xiao, K., Wu, J., Saidaminov, M. I., Lin, H., Ma, C.-Q., Zhao, Z., Wu, Y., Tan, H. (2022). Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. nature Energy, 7(8), 708–717. https://doi.org/10.1038/s41560-022-01045-2
  • Lukaszkowicz, K., Szindler, M., Drygała, A., Dobrzański, L. A., Prokopowicz, M. P.-V., Pasternak, I., Aleksandra Przewloka, A., Szindler, M. M., & Domański, M. (2017). Graphene-based layers deposited onto flexible substrates: Used in dye-sensitized solar cells as counter electrodes. Applied Surface Science, 424, 157–163. https://doi.org/10.1016/j.apsusc.2017.02.040
  • Luo, Q., Ma, H., Hou, Q., Li, Y., Ren, J., Dai, X., & Yao, Z. (2018). All-carbon-electrode-based endurable flexible perovskite solar cells. Advanced Functional Materials, 1706777, 1–8. https://doi.org/10.1002/adfm.201706777
  • Maheswaran, R., & Shanmugavel, B. P. (2022). A critical review of the role of carbon nanotubes in the progress of next generation electronic applications. Journal of Electronic Materials, 51, 2786–2800. https://doi.org/10.1007/s11664-022-09516-8
  • Ma, L., Li, W., Yang, K., Bi, J., Feng, J., Zhang, J., Yan, Z., Zhou, X., Cuixiu Liu, C., Yuan, J., Huang, J. C., & Han, X. (2021). A- orX-site mixture on mechanical propertiesof APbX3perovskite single crystals. APL Materials, 9(4), 041112. https://doi.org/10.1063/5.0015569
  • Maronchuk, I., Sanikovich, D., & Mironchuk, V. (2019). Solar Cells: Current state and development prospects. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations, 62, 105–123. https://doi.org/10.21122/1029-7448-2019-62-2-105-123
  • Martin-Palma, R. J., & Lakhtakia, A. (2013). Vapour Deposition Techniques. Engineered Biomimicry, 383–399. https://doi.org/10.1016/B978-0-12-415995-2-00015-5
  • Meng, J. H., Liu, X., Zhang, X. W., Zhang, Y., Wang, H. L., Yin, Z.-G., Zhang, Y.-Z., Liu, H., You, J.-B., & Yan, H. (2016). Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 28, 44–50. https://doi.org/10.1016/j.nanoen.2016.08.028
  • Metzger, W. K., Grover, S., Lu, D., Colegrove, E., Moseley, J., Perkins, C. L., Li, X., Mallick, R., Zhang, W., Malik, R., Kephart, J., Jiang, C.-S., Kuciauskas, D., Albin, D. S., Al-Jassim, M. M., Xiong, G., & Gloeckler, M. (2019). Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nature Energy, 4(10), 837–845. https://doi.org/10.1038/s41560-019-0446-7
  • Mustafa, M. N., & Sulaiman, Y. (2020). Fully flexible dye-sensitized solar cells photoanode modified with titanium dioxide-graphene quantum dot light scattering layer. Solar Energy, 212(December), 332–338. https://doi.org/10.1016/j.solener.2020.11.001
  • Nassiri Nazif, K., Daus, A., Hong, J., Lee, N., Vaziri, S., Kumar, A., Nitta, F., Chen, M. E., Kanaian, S., Islam, R., Kim, K.-H., Park, J.-H., Poon, A. S., Brongersma, M. L., Pop, E., & Saraswat, K. C. (2021). High-specific-power flexible transition metal dichalcogenide solar cells. nature Communications, 12(1), 7034. https://doi.org/10.1038/s41467-021-27195-7
  • National Renewable Energy Laboratory (NREL). Photovoltaic research, best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
  • Nguyen, N. N., Lee, H. C., Yoo, M. S., Lee, E., Lee, H., Lee, S. B., & Cho, K. (2020). Charge-transfer-controlled growth of organic semiconductor crystals on graphene. advanced Science, 7(6), 1902315. https://doi.org/10.1002/advs.201902315
  • Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S and Coleman J N. (2013). Liquid Exfoliation of Layered Materials. Science, 340(6139), 10.1126/science.1226419
  • Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. 10.1126/science.1102896
  • O’Regan, B., & Grätzel, G. (1991). A low-cost, high-efficiency solar cell based on Dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0
  • Radisavljevic, B., Radenovic, A., Brivio, J. G., V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotech, 6, 147–150. https://doi.org/10.1038/nnano.2010.279
  • Raman, V., Jo, J., & Kim, H. K. (2020). ITO and graphene-covered Ag grids embedded in pet substrate by thermal roll imprinting for flexible organic solar cells. Materials Science in Semiconductor Processing, 120(December), 105277. https://doi.org/10.1016/j.mssp.2020.105277
  • Rance, W. L., Burst, J. M., Meysing, D. M., Wolden, C. A., Reese, M. O., Gessert, T. A., Metzger, W. K., Garner, S., Cimo, P., & Barnes, T. M. (2014). 14 % -efficient flexible cdte solar cells on ultra-thin glass substrates. Applied Physics Letters, 104(143903). https://doi.org/10.1063/1.4870834
  • Sahito, I. A., Sun, K. C., Arbab, A. A., Qadir, M. B., Choi, Y. S., & Jeong, S. H. (2016). Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell. Journal of Power Sources, 319, 90–98. https://doi.org/10.1016/j.jpowsour.2016.04.025
  • Salavei, A., Menossi, D., Piccinelli, F., Kumar, A., Mariotto, G., Barbato, M., Meneghini, M., Meneghesso, G., Di Mare, S., Artegiani, E., & Romeo, A. (2016). Comparison of high efficiency flexible cdte solar cells on different substrates at low temperature deposition. Solar Energy, 139, 13–18. https://doi.org/10.1016/j.solener.2016.09.004
  • Seo, K.-W., Lee, J.-H., Cho, N. G., Kang, S. J., Kim, H.-K., Na, S.-I., Koo, H.-W., & Kim, T.-W. (2014). Simple brush painted ag nanowire network on graphene sheets for flexible organic solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32(6), 061201. https://doi.org/10.1116/1.4894375
  • Shin, D., Hee, S. W. S., Kim, J. M., Lee, H. S., & Choi, S. H. (2018). Graphene transparent conductive electrodes doped with graphene quantum dots-mixed silver nanowires for highly-flexible organic solar cells. Journal of Alloys and Compounds, 744(May), 1–6. https://doi.org/10.1016/j.jallcom.2018.02.069
  • Shin, D. H., Jang, C. W., Lee, H. S., Seo, S. W., & Choi, S. H. (2018). Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes. ACS Applied Materials & Interfaces, 10(4), 3596–3601. https://doi.org/10.1016/j.jallcom.2018.02.069
  • Shin, D. H., Kim, J. K., Shin, S. H., & Choi, S. H. (2019). Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer. Dyes and Pigments, 170, 107630. https://doi.org/10.1016/j.dyepig.2019.107630
  • Sim, J.-K., Kang, S., Nandi, R., Jo, J.-Y., Jeong, K.-U., & Lee, C.-R. (2018). Implementation of graphene as hole transport electrode in Fl Exible CIGS solar cells fabricated on Cu Foil. Solar Energy, 162, 357–363. https://doi.org/10.1016/j.solener.2018.01.053
  • Singh, J. P., Kumar, M., Sharma, A., Pandey, G., Chae, K. H., & Lee, S. (2020). Bottom-up and top-down approaches for MgO. Sonochemical Reactions, IntechOpen. https://doi.org/10.5772/intechopen.91182
  • Souza, Z. S. B., Pinto, G. M., Silva, G. C., Demarquette, N. R., Fechine, G. J. M., & Sobrinho, M. A. M. (2021). Interface adjustment between poly(ethylene terephthalate) and graphene oxide in order to enhance mechanical and thermal properties of nanocomposites. Journal of Polymer Engineering and Science, 61(7), 1997–2011. https://doi.org/10.1002/pen.25715
  • Tang, H., Feng, H., Wang, H., Wan, X., & Liang, J. (2019). Highly conducting mxene–silver nanowire transparent electrodes for flexible organic solar cells. Research-article. ACS Applied Materials & Interfaces, 11(28), 25330–25337. https://doi.org/10.1021/acsami.9b04113
  • Teloeken, A. C., Lamb, D. A., Dunlop, T. O., & Irvine, S. J. C. (2020). Effect of bending test on the performance of cdte solar cells on flexible ultra-thin glass produced by MOCVD. Solar Energy Materials and Solar Cells, 211, 110552. https://doi.org/10.1016/j.solmat.2020.110552
  • Tran, V. D., Pammi, S. V. N., Park, B. J., Han, Y., Jeon, C., & Yoon, S. G. (2019). Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy, 65(November), 104018. https://doi.org/10.1016/j.nanoen.2019.104018
  • Tsukamoto, H. (2020). Enhanced mechanical properties of carbon nanotube/aluminum composites fabricated by powder metallurgical and repeated hot-rolling techniques. journal of Composites Science, 4, 169. https://doi.org/10.3390/jcs40401694
  • Varghese, R. J., Sakho, E.-H. M., Parani, S., Thomas, S., Oluwafemi, O. S., & Wu, J. (2019). Introduction to nanomaterials: Synthesis and applications. Nanomaterials for Solar Cell Applications. https://doi.org/10.1016/C2016-0-03432-0.
  • Vinoth, R., Babu, S. G., Bharti, V., Gupta, V., Navaneethan, M., Bhat, S. V., Muthamizhchelvan, C., Ramamurthy, P. C., Sharma, C., Aswal, D. K., Hayakawa, Y., & Neppolian, B. (2017). Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. scientific Reports, 7(1), 43133. https://doi.org/10.1038/srep43133
  • Wang, Y., Chen, Q., Zhang, G., Xiao, C., Wei, Y., & Li, W. (2022). Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells. Materials Science, ACS Applied Materials & Interfaces, 14, 5699–5708. https://doi.org/10.1021/acsami.1c18866
  • Wang, X., Li, Z., Xu, W., Kulkarni, S. A., Batabyal, S. K., Zhang, S., Cao, A., & Wong, L. H. (2015). TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 11, 728–735. https://doi.org/10.1016/j.nanoen.2014.11.042
  • Wang, Z., Rong, X., Wang, L., Wang, W., Lin, H., & Li, X. (2020). Dual role of amino-functionalized graphene quantum dots in NiOxFilms for efficient inverted flexible perovskite solar cells. ACS Applied Materials & Interfaces Interfaces, 12(7), 8342–8350. https://doi.org/10.1021/acsami.9b22471
  • Wang, H., Wu, Y., Yuan, X., Zeng, G., Zhou, J., Wang, X., & Chew, J. W. (2018). Clay-inspired mxene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Advanced Materials, 30(12), 1–28. https://doi.org/10.1002/adma.201704561
  • Wu, C., Wang, D., Zhang, Y., Gu, F., Liu, G., Zhu, N., Luo, W., Han, D., Guo, X., Qu, B., Wang, S., Bian, Z., Chen, Z., & Xiao, L. (2019). FAPbI3Flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Advanced Functional Materials, 29(34), 1902974. https://doi.org/10.1002/adfm.201902974
  • Yang, S., Cha, J., Kim, J. C., Lee, D., Huh, W., Kim, Y., Lee, S. W., Park, H. -G., Jeong, H. Y., Hong, S., & Lee, G. -H. (2020). Monolithic interface contact engineering to boost optoelectronic performances of 2d semiconductor photovoltaic heterojunctions. Nano letters, 20(4), 2443–2451. https://doi.org/10.1021/acs.nanolett.9b05162
  • Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H. S., & Choi, M. (2017). Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & Environmental Science, 10(1), 337–345. https://doi.org/10.1039/C6EE02650H
  • Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M. J., & Zhao, X. (2013). Nature materials, 12, 321–325. https://doi.org/10.1038/nmat3542
  • Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric, 3, 17. https://doi.org/10.1186/s40538-016-0070-8
  • Zhang, J., Mei Yu, M., Li, S., Meng, Y., Wu, X., & Liu, J. (2016). Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 334(December), 44–51. https://doi.org/10.1016/j.jpowsour.2016.https://doi.org/10.012
  • Zhang, J., Wang, Z., Li, X., Yang, J., Song, C., Li, Y., Cheng, J., Guan, Q., & Wang, B. (2019). Flexible platinum-free fiber-shaped dye sensitized solar cell efficiency. ACS Applied Energy Materials, 2(4), 2870–2877. https://doi.org/10.1021/acsaem.9b00207