721
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Effects of titanium dioxide coatings on building composites for sustainable construction applications

, ORCID Icon, , , &
Article: 2151168 | Received 03 Sep 2022, Accepted 19 Nov 2022, Published online: 28 Nov 2022

References

  • Adekomaya, O., & Adama, K. (2018). Investigating water absorption and thickness swelling tendencies of polymeric composite materials for external wall application in refrigerated vehicles. Nigerian Journal of Technology, 37(1), 167–13. https://doi.org/10.4314/njt.v37i1.22
  • Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D. C., & Gochi-Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials, 34, 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072
  • ASTM: D6489. (1999). Standard test method for determining the water absorption of hardened concrete treated with a repellent coating. The American Society for Testing and Materials, 99(Reapproved 2012), 2012–2014. https://www.en-standard.eu/astm-d6489-99r20-standard-test-method-for-determining-the-water-absorption-of-hardened-concrete-treated-with-a-water-repellent-coating/
  • Babaizadeh, H., & Hassan, M. (2013). Life cycle assessment of nano-sized titanium dioxide coating on residential windows. Construction and Building Materials, 40, 314–321. https://doi.org/10.1016/j.conbuildmat.2012.09.083
  • Colangiuli, D., Calia, A., & Bianco, N. (2015). Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Construction and Building Materials, 93, 189–196. https://doi.org/10.1016/j.conbuildmat.2015.05.100
  • Danish, P., & Ganesh, M. G. (2020). Durability properties of self-compacting concrete using different mineral powders additions in ternary blends. Romanian Journal of Materials, 50(3), 369–378. https://research.vit.ac.in/publication/durability-properties-of-self-compacting-concrete-using-different
  • Dinesh, K., Rani, P., Venkatesh, N., Vamsi, M., Salman, S., & Gouse, S. (2018). Partial replacement of cement with quarry dust and rice husk ash in concrete. International Journal of Engineering Research and Technology, 5(4), 4072–4079. https://www.irjet.net/archives/V5/i4/IRJET-V5I4908.pdf
  • Fadele, O. A., & Ata, O. (2018). Water absorption properties of sawdust lignin stabilised compressed laterite bricks. Case Studies in Construction Materials, 9, e00187. https://doi.org/10.1016/j.cscm.2018.e00187
  • Folli, A., Jakobsen, U. H., Guerrini, G. L., & Macphee, D. E. (2009). Rhodamine B discolouration on TiO2 in the cement environment: A look at fundamental aspects of the self-cleaning effect in concretes. Journal of Advanced Oxidation Technologies, 12(1), 126–133. https://doi.org/10.1515/jaots-2009-0116
  • Graziani, L., Quagliarini, E., Bondioli, F., & Orazio, M. D. (2014). Durability of self-cleaning TiO2 coatings on Fi Red clay brick Façades: Effects of UV exposure and wet & dry cycles. Building and Environment, 71, 193–203. https://doi.org/10.1016/j.buildenv.2013.10.005
  • Hamada, H. M., Al-attar, A. A., Yahaya, F. M., Muthusamy, K., Tayeh, B. A., & Humada, A. M. (2020). Effect of high-volume ultrafine palm oil fuel ash on the engineering and transport properties of concrete. Case Studies in Construction Materials, 12. https://doi.org/10.1016/j.cscm.2019.e00318
  • Hamdany, A. H., Satyanaga, A., Zhang, D., Kim, Y., & Kim, J. R. (2022). Photocatalytic cementitious material for eco-efficient construction—A systematic literature review. Applied Sciences, 12(17), 17. https://doi.org/10.3390/app12178741
  • Hamidi, F., & Aslani, F. (2019). Tio2-based photocatalytic cementitious composites : Materials, properties, influential parameters, and assessment techniques. Nanomaterials, 9(10), 10. https://doi.org/10.3390/nano9101444
  • Herki, B. M. A. (2020). Effect of different curing regimes on capillarity of concrete incorporating local materials. Journal of Critical Reviews, 7(4), 524–530. http://www.jcreview.com/admin/Uploads/Files/61a8f9dd49a066.63728245.pdf
  • Kelechi, S. E., Adamu, M., Ibrahim, Y. E., Obianyo, I. I., & Obianyo, I. I. (2022). Durability performance of self-compacting concrete containing crumb rubber, fly ash and calcium carbide waste. Materials (Basel), 15(2), 488. https://doi.org/10.3390/ma15020488
  • Kelechi, S. E., Adamu, M., Mohammed, A., Obianyo, I. I., & Ibrahim, Y. E. (2022). Equivalent CO2 emission and cost analysis of green self-compacting rubberized concrete. Sustainability, 14(137), 1–14. https://doi.org/10.3390/su14010137
  • Li, W., Lin, J., Zhao, Y., & Pan, Z. The Adverse effects of TiO2 photocatalycity on paraloid B72 hybrid stone relics protective coating aging behaviors under UV irradiation. Polymers (Basel)., 2021, 13 (262). https://doi.org/10.3390/polym13020262
  • Liu, C., Bai, J., Zhang, S., Yang, Z., & Luo, M. (2021). Applications and advances in TiO2 based photocatalytic building materials. Journal of Physics: Conference Series, 2011(1), 1. https://doi.org/10.1088/1742-6596/2011/1/012049
  • Mustapha, K., Annan, E., Azeko, S. T., Zebaze Kana, M. G., & Soboyejo, W. O. (2016). Strength and fracture toughness of earth-based natural fiber-reinforced composites. Journal of Composite Materials, 50(9), 1145–1160. https://doi.org/10.1177/0021998315589769
  • Muttashar, H. L., Ali, N. B., Mohd Ariffin, M. A., & Hussin, M. W. (2018, December). Microstructures and physical properties of waste garnets as a promising construction materials. Case Studies in Construction Materials, 8 (2017), 87–96. https://doi.org/10.1016/j.cscm.2017.12.001
  • Obianyo, I. I., Mahamat, A. A., Anosike-Francis, E. N., Stanislas, T. T., Geng, Y., Chibuzor, K., Odusanya, S., Onwualu, A. P., Soboyejo, A. B. O., & Colmenares, R. F. (2021). Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications. Cogent Engineering, 8(1), 0–19. https://doi.org/10.1080/23311916.2021.1921673
  • Obianyo, I., Mahamat, A. A., Tiwa, T., Gina, S., & Ihekweme, O. (2021). Production and utilization of earth-based bricks for sustainable building applications in Nigeria : Status, benefits, challenges and way forward. Journal of Building Pathology and Rehabilitation, 4, 1–11. https://doi.org/10.1007/s41024-021-00131-4
  • Obianyo, I. I., Onwualu, A. P., & Soboyejo, A. B. O. (2020). Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications. Case Studies in Construction Materials, 12. https://doi.org/10.1016/j.cscm.2020.e00331
  • Onyelowe, K. C. (2019). Nanosized palm bunch Ash (NPBA) stabilisation of lateritic soil for construction purposes. International Journal of Geotechnical Engineering, 13(1), 83–91. https://doi.org/10.1080/19386362.2017.1322797
  • Pérez-nicolás, M., Plank, J., Ruiz-izuriaga, D., Navarro-blasco, I., Fernández, J. M., & Alvarez, J. I. (2018). Photocatalytically active coatings for cement and air lime mortars : enhancement of the activity by incorporation of superplasticizers. Construction and Building Materials, 162, 628–648. https://doi.org/10.1016/j.conbuildmat.2017.12.087
  • Praveenkumar, T. R., Vijayalakshmi, M. M., & Meddah, M. S. (2019). Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash. Construction and Building Materials, 217, 343–351. https://doi.org/10.1016/j.conbuildmat.2019.05.045
  • Raman, S. N., Ngo, T., Mendis, P., & Mahmud, H. B. (2011). High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Construction and Building Materials, 25(7), 3123–3130. https://doi.org/10.1016/j.conbuildmat.2010.12.026
  • Reddy, B. V. V., & Gupta, A. (2005, July). Characteristics of cement-soil mortars. Materials and Structures, 38 (38), 639–650. https://doi.org/10.1617/14197
  • Stanislas, T. T., Charles, G., Odette, K., Ngasoh, F., Ijeoma, I., Foba, J., Peter, T., Onwualu, A., & Savastano, H. (2021). Performance and durability of cellulose pulp‑reinforced extruded earth‑based composites. Arabian Journal for Science and Engineering, 46(123456789), 11153–11164. https://doi.org/10.1007/s13369-021-05698-1
  • Wenapere, D. A., & Ephraim, M. E. (2009). Physico-mechanical behaviour of sandcrete block masonry units. Journal of Building Appraisal, 4(4), 301–309. https://doi.org/10.1057/jba.2009.8
  • Woode, A. (2014). An Experiment to determine the prospect of using cocoa pod husk ash as stabilizer for weak lateritic soils. 6(10), 60–66. https://www.iiste.org/Journals/index.php/CER/article/view/16397
  • Yaw, M. I., Emmanuel, A., K, Y. P. P., & Senyo, D. K. (2015). Feasibility of using cocoa pod husk ash (CPHA) as a stabilizer in the production of compressed earth bricks. 3(6), 514–524. https://www.semanticscholar.org/paper/Feasibility-of-using-Cocoa-Pod-Husk-Ash-(CPHA)-as-a-Yaw-Emmanuel/de256a26625e5232c0a9cc07b6acbbb5ad983faa
  • Zaid, O., Ahmad, J., Siddique, M. S., & Aslam, F. (2021). Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Frontiers in Materials, 8(June), 1–14. https://doi.org/10.3389/fmats.2021.665625
  • Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014, 1–8. https://doi.org/10.1155/2014/650373