5,420
Views
14
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Selected AI optimization techniques and applications in geotechnical engineering

ORCID Icon, , , , , , , , , , , , , , , & show all
Article: 2153419 | Received 23 Sep 2022, Accepted 25 Nov 2022, Published online: 26 Dec 2022

References

  • Adeli, H. (2001). Neural networks in civil engineering: 1989-2000. Computer-AidedCivil and Infrastructure Engineering, 16(2), 126–36. https://doi.org/10.1111/0885-9507.00219
  • Adeli, H., & Yeh, C. (1989). Preceptron learning in engineering design. Microcomputer inCivil Engineering, (4), 247–256.
  • Afshar, A., Massoumi, F., Afshar, A., & Mariño, M. A. (2015). State of the art review of ant colony optimization applications in water resource management. Water Resource Management, 29(11), 3891–3904. https://doi.org/10.1007/s11269-015-1016-9
  • Ahangari, K., Moeinossadat, S. R., & Behnia, D. (2015). Estimation of tunnelling-induced settlement by modern intelligent methods. Soils and Foundations, 55(4), 737–748. https://doi.org/10.1016/j.sandf.2015.06.006
  • Ahmad, S. S. S., Othman, Z., Kasmin, F., & Borah, S. (2018). Modeling of Concrete Strength Prediction using Fuzzy Type-2 Techniques. Journal of Theoretical and Applied Information. Technology, 96, 7973–7983.
  • Akhani, M., Kashani, A. R., Mousavi, M., & Gandomi, A. H. (2019). A hybrid computational intelligence approach to predict spectral acceleration. Measurement, 138, 578–589. http://doi.org/10.1016/j.measurement.2019.02.054
  • Alaneme, G. U., Onyelowe, K. C., Onyia, M. E., Bui Van, D., Mbadike, E. M., Ezugwu, C. N., Dimonyeka, M. U., Attah, I. C., Ogbonna, C., Abel, C., Ikpa, C. C., & Udousoro, I. M. (2020). Modeling Volume Change Properties of Hydrated-Lime Activated Rice Husk Ash (HARHA) Modified Soft Soil for Construction Purposes by Artificial Neural Network (ANN). Umudike Journal of Engineering and Technology (UJET), 6(1), 1–12. https://doi.org/10.33922/j.ujet_v6i1_9
  • Alireza, G., & Hashemi, E. (2007). Designing work breakdown structures using modular neural networks Elsevier, Decision Support Systems. 44, 202–222.
  • American Concrete Institute (ACI). (2005). Building code requirements for structural concrete and commentary (ACI 318-05).
  • Andrade, J. J. D., & Boldo, G. C. (2018). Influence of Stone Dust as Fine Aggregate Replacement on Concrete Compressive Strength Using an Analysis of Variance (ANOVA). MOJ Civil Engineering, 4(3), 138–141. https://doi.org/10.15406/mojce.2018.04.00111
  • Ang, A. H.-S., & Tang, W. H. (2006). Probability Concepts in Engineering_ Emphasis on Applications to Civil and Environmental Engineering (2nd ed.). John Wiley & Sons, Inc.
  • Armaghani, D. J., & Asteris, P. 2020. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Computer Science: Neural Computing and Applications, Corpus ID: 221110523. 10.1007/s00521-020-05244-4
  • Armaghani, D. J., Faradonbeh, R. S., Rezaei, H., Rashid, A. S., & Amnieh, H. B. (2016). Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming. Neural Computing and Applications, 29(11), 1115–1125.
  • Attah, I. C., Etim, R. K., Alaneme, G. U., & Bassey, O. (2020). Optimization of Mechanical Properties of Rice Husk Ash Concrete Using Scheffe’s Theory. SN Applied Sciences, 2(5), 1–13. https://doi.org/10.1007/s42452-020-2727-y
  • Aydi, A., Zairi, M., & Dhia, H. B. (2013). Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment. Environmental Earth Science, 68(5), 1375–1389. https://doi.org/10.1007/s12665-012-1836-3
  • Azizi, K., Attari, J., & Moridi, A. (2017). Estimation of discharge coefficient and optimization of Piano Key Weirs. In: Labyrinth and Piano Key Weirs III: proceedings of the 3rd international workshop on Labyrinth and Piano Key Weirs (PKW 2017), Qui Nhon,Vietnam, 22–24Feb2017. CRC Press. https://doi.org/10.1201/9781315169064-30
  • Azura, M. Z., & Adnan, Z. (2019). An overview of traditional and non-traditional stabilizer for soft soil. Materials Science and Engineering, 527(2019).
  • Behfarnia, K., & Khademi, F. A. (2017). Comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system. International Journal of Optimization in Civil Engineering, 7, 71–80.
  • Bekdaş, G., Nigdeli, S. M., Kayabekir, A. E., & Yang, X. S. (2019). Optimization in civil engineering and metaheuristic algorithms: a review of state-of-the-art developments. In P. G.m, X.-S. Yang, & A. J. da Silva Neto (Eds.), Computational intelligence, optimization and inverse problems with applications in engineering (pp. 111–137). Springer.
  • Benali, A., Nechnech, A., & Ammar, B. D. (2013, February). Principal component analysis and Neural Networks for predicting the pile capacity using SPT. International Journal of Engineering and Technology, 5(1).
  • Besawa, L. E., Rizzob, D. M., & Mouserb, P. J. (2006). Application of an Artificial Neural Network for Analysis of Subsurface Contamination at the Schuyler Falls.
  • Bouayad, D., & Emeriault, F. (2017). Modeling the relationship between ground surface settlements induced by shield tunnelling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunnelling and Underground Space Technology, 68, 142–152. http://doi.org/10.1016/j.tust.2017.03.011
  • Cabalar, A. F., Cevik, A., & Gokceoglu, C. (2012). Some applications of Adaptive Neuro-Fuzzy Inference System (ANFIS) in geotechnical engineering. Computers and Geotechnics, 40, 14–33. http://doi.org/10.1016/j.compgeo.2011.09.008
  • Celikyilmaz, A., & Türksen, I. B. (2009). Modelling uncertainity with fuzzy logic: with recent theory and applications. Studies in Fuzziness and Soft Computing. Springer-Verlag. https://doi.org/10.1007/978-3-540-89924-2
  • Chamchali, M. M., & Ghazifard, A. (2020). A comparison of fuzzy logic and TOPSIS methods for landfill site selection according to field visits, engineering geology approach and geotechnical experiments (case study: Rudbar County, Iran). Waste Management &Research, 1–26. http://doi.org/10.1177/0734242X20952839
  • Chandwani, V., Agrawal, V., & Nagar, R. (2014). Applications of Artificial Neural Networks in Modelling Compressive Strength of Concrete: A State of the Art Review. International Journal of Current Engineering and Technology, 4(4), 2949–2956.
  • Chao, Z., Ma, G., Zhang, Y., Zhu, Y., & Hu, H. (2018). The application of artificial neural network in geotechnical engineering, International Conference on Civil and Hydraulic Engineering, IOP Conference Series: Earth and Environmental Science 189. http://doi.org/10.1088/1755-1315/189/2/022054.
  • Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A. S., & Balas, V. E. (2017). Particleswarm optimization trained neural network for structural failure prediction ofmultistoried RC buildings. Neural Computing & Applications, 28(8), 2005–2016. http://doi.org/10.1007/s00521-016-2190-2
  • Cheng, Y. M. (2003). Locations of critical failure surface and some further studies on slope stability analysis. Computers and Geotechnics, 30(3), 255–267. https://doi.org/10.1016/S0266-352X(03)00012-0
  • Cheng, Y. M., Li, L., Chi, S. C., & Wei, W. B. (2007a). Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Computers and Geotechnics, 34(2), 92–103.
  • Cheng, M.-Y., Tsai, H.-C., Ko, C.-H., & Chang, W.-T. (2008). Evolutionary Fuzzy Neural Inference System for Decision Making in Geotechnical Engineering. ASCE Journal of Computing in Civil Engineering, 22(4), 272–280. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:4(272)
  • Chester, G. W., & Mei, B. (2005). Neural Network Modeling of Highway Construction Costs. Journal of Construction Engineering and Management, 131(7), 765–771. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:7(765)
  • Chua, D. K. H., Kog, Y. C., Loh, P. K., & Jaselskis, E. J. (1997). Model for Construction Budget Performance-Neural network Approach. Journal of Construction Engineering and Management, 120(3), 214–222. https://doi.org/10.1061/(ASCE)0733-9364(1997)123:3(214)
  • Das, S. K., & Basudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, 100(3&4), 142–145. https://doi.org/10.1016/j.enggeo.2008.03.001
  • Djamalddine, B., Smain, B., & Bojan, Z. (2011). Fuzzy-sets decision-support system for geotechnical site soundings. Acta geotechnica Slovenica, 8, 1. 51–63.
  • Eberemu, A. O., Amadi, A. A., & Osinubi, K. J. (2013). The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment application. In Waste and Biomass Valorization (Vol. 4, (pp. 309–323). Springer. http://link.springer.com/article/10.1007/s12649-012-9161-3Springer
  • Ebid, M. A. (2020). 35 Years of (AI) in Geotechnical Engineering: State of the Art. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-020-01536-7
  • Eidgahee, D. R., Fasihi, F., & Naderpour, H. (2015). Optimized artificial neural network for amazing soil-waste rubber shred mixture (in Persian). Sharif Journal of Civil Engineering, 31.2(1.1), 105–111.
  • El-Khoja, A. M. N., Ashour, A. F., Abdalhmid, J., Dai, X., & Khan, A. (2018). Prediction of rubberised concrete strength by using artificial neural networks. International Journal of Structural and Construction Engineering, 12(11), 1068–1073.
  • ElSawy, I., & Hosny, H. (2011, May). Mohammed Abdel Razek a Neural Network Model for Construction Projects Site Overhead Cost Estimating in Egypt. International Journal of Computer Science Issues, 8(3), 273–283. https://doi.org/10.48550/arXiv.1106.1570
  • Fakharian, P., Naderpour, H., Haddad, A., Rafiean, A. H., & Eidgahee, D. R. (2018). A proposed model for compressive strength prediction of FRP-confined rectangular column in terms of Genetic expression Programming (GEP) (in Persian). Concrete Research.
  • Fani, G., & Basil, P. (2020). The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement. Symmetry, 12(8), 1295. https://doi.org/10.3390/sym12081295
  • Fatehnia, M., & Amirinia, G. (2018). A review of Genetic Programming and Artificial Neural Network applications in pile foundations. 9(2), 1–20. https://doi.org/10.1186/s40703-017-0067-6
  • Feng, J., Wu, X., Yang, Q., & Zhu, B. (2014). Prediction of Railway Foundation Settlement Based on the BP Neural Network Model. Elecrtonic Journal of Geotechnical Engineering, 6857–6867.
  • Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 13(2), 87–129.
  • Ferreira, C. (2006). Automatically Defined Functions in Gene Expression Programming. In N. Nedjah, L. de M. Mourelle, & A. Abraham Eds., Genetic Systems Programming: Theory and Experiences, Studies in Computational Intelligence. Vol. 13. 21–56. Springer-Verlag. http://www.gene-expression-programming.com/author.asp
  • Gadzama, E. W. (2020). Evaluation of compacted lateritic soil treated with sporosarcina pasteurii for use as a hydraulic barrier material in municipal solid waste containment application. An ongoing PhD research work (Unpublished). Department of civil engineering, Ahmadu Bello University Zaria
  • Gandomi, A. H., & Kashani, A. R. (2018). Automating pseudo-static analysis of concrete cantilever retaining wall using evolutionary algorithms. Measurement, 115, 104–124. http://doi.org/10.1016/j.measurement.2017.10.032
  • Gandomi, A. H., Kashani, A. R., Roke, D. A., & Mousavi, M. (2017). Optimization of retaining wall design using evolutionary algorithms. Struct Multidisc Optim, 55(3), 809–825. http://doi.org/10.1007/s00158-016-1521-3
  • Garcia-Segura, T., Yepes, V., & Frangopol, D. M. (2017). Multi-objective design ofpost-tensioned concrete road bridges using artificial neural networks. Structural andMultidisciplinary Optimization, 56(1), 139–150. http://doi.org/10.1007/s00158-017-1653-0
  • Gholami, H., Mohammadifar, A., Bui, D. T., & Collins, A. L. (2020). Mapping wind erosion hazard with regression-based machine learning algorithms. Scientific Report, 10(20494). https://doi.org/10.1038/s41598-020-77567-0
  • Goh, A. T. C. (1994). Seismic liquefaction potential assessed by neural network. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 120(9), 1467–1480. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)
  • Goh, A. T. C. (1996). Neural-network modelling of CPT seismic liquefaction data. Journal of Geotechnical engineering, ASCE, 122(1), 70–73. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(70)
  • Goharzay, M., Noorzad, A., Ardakani, A. M., & Jalal, M. (2017). A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 683–693. https://doi.org/10.1016/j.jrmge.2017.03.011
  • Goh, A. T. C., Kulhawy, F. H., & Chua, C. G. (2005). Bayesian neural networkanalysis of undrained side resistance of drilled shafts. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131(1), 84–93. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(84)
  • Gokceoglu, C., Yesilnacar, E., Sonmez, H., & Kayabasi, A. A. (2004). Neuro-fuzzy model for modulus of deformation of jointed rock masses. Computer and Geotechnics, 31(5), 375–383. https://doi.org/10.1016/j.compgeo.2004.05.001
  • Günaydin, O. (2009). Estimation of soil compaction parameters by using statistical analysesand artificial neural networks. Environmental Geology, 57(57), 203–215. https://doi.org/10.1007/s00254-008-1300-6
  • Haghshenas, S. S., Mikaeil, R., Haghshenas, S. S., Naghadehi, M. Z., & Moghadam, P. S. (2017b). Fuzzy and classical MCDM techniques to rank the slope stabilization methods in a rock-fill reservoir dam. Civil Engineering Journal, 3(6), 382–394. https://doi.org/10.28991/cej-2017-00000099
  • Haghshenas, S. S., Ozcelik, Y., Haghshenas, S. S., Mikaeil, R., & Moghadam, P. S. (2017a). Ranking and assessment of tunneling projects risks using fuzzy MCDM (Case study: Toyserkan doolayi tunnel). In: IMCET 2017: new trends in mining—proceedings of 25th international mining congress of Turkey. pp. 289–296.
  • Hajihassani, M., Abdullah, S. S., Asteris, P. G., & Armaghani, D. J. (2019). A Gene Expression Programming Model for Predicting Tunnel Convergence. Applied Sciences, 9(21), 4650. https://doi.org/10.3390/app9214650
  • Hasanien, H. M., & Ali, S. Q. (2015). Bacterial foraging based optimal design of transverse flux linear motor for thrust force improvement. Electric Power Components and Systems, 43(1), 95–104. https://doi.org/10.1080/15325008.2014.964813
  • Hasanipanah, M., Noorian-Bidgoli, M., Armaghani, D. J., & Khamesi, H. (2016). Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers, 32(4), 705–715. http://doi.org/10.1007/s00366-016-0447-0
  • Haykin, S. (2009) Neural Networks and Learning Machines. Prentice Hall/Pearson, New York.
  • Huang, Y., Li, J., & Fu, J. (2019). Review on application of artificial intelligence in civil engineering. Computer Modelling in Engineering and Sciences, 121(3), 845–875.
  • Huang, Y. T., & Siller, T. J. (1997). Fuzzy representation and reasoning in geotechnical site characterization. Computer and Geotechnics, 21(1), 1, 65–86. Elsevier. B.V. https://doi.org/10.1016/S0266-352X(95)00013-Z
  • Hubick, K. T. (1992). Artificial neural networks in Australia, Department of Industry, Technology and Commerce. Commonwealth of Australia.
  • Ikizler, S. B., Aytekin, M., vVekli, M., & Kocabas, F. (2009). Prediction of swelling pressures of expansive soils using artificial neural networks. Advances in Engineering Software.
  • Ikizler, S. B., Vekli, M., Dogan, E., Aytekin, M., & Kocabas, F. (2012). Prediction of swellingpressures of expansive soils using soft computing methods. Neural Comput & Applic.
  • Isam, S., & Wengang, Z. (2019). Use of soft computing techniques for tunneling optimization of tunnel boring machines. Underground space. http://doi.org/10.1016/j.undsp.2019.12.001
  • Iyeke, S. D., Eze, E. O., Ehiorobo, J. O., & Osuji, S. O. (2016). Estimation of shear strength parameters of lateritic soils using artificial neural network. Nigerian Journal of Technology, 35(2), 260–269. http://doi.org/10.4314/njt.v35i2.5
  • Jafari, K., Tabatabaeian, M., Joshaghani, A., Ozbakkaloglu, & Ozbakkaloglu, T. (2018). Optimizing the mixture design of polymer concrete: An experimental investigation. Constr. Build. Mater, 167, 185–196. http://doi.org/10.1016/j.conbuildmat.2018.01.191
  • Jahed Armaghani, D., Safari, V., Fahimifar, A., Mohd Amin, M. F., Monjezi, M., & Mohammadi, M. A. (2017). Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Computing and Applications, 30(11), 3523–3532. https://doi.org/10.1007/s00521-017-2939-2
  • Jaksa, M. B. (1995). “The influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay,” PhD thesis, The University of Adelaide.
  • Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541
  • Johari, A., Javadi, A., & Najafi, H. (2016). A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil. Scientia Iranica, 23(1), 54–65. https://doi.org/10.24200/sci.2016.2097
  • Kalantary, F., & Kordnaeij, A. (2012). Prediction of compression index using artificial neural network. Scientific Research and Essays, 7(31), 2835–2848. https://doi.org/10.5897/SRE12.297
  • Kalemci, E. N., Banuikizler, S., Dede, T., & Angın, Z. (2020). Design of reinforced concrete.
  • Kalemci, E. N., İkizler, S. B., Dede, T., & Angın, Z. (2020). Cantilever retaining wall using Grey wolf optimization algorithm. Structures, 23, 245–253. https://doi.org/10.1016/j.istruc.2019.09.013
  • Kalkan, E., Akbulut, S., Tortum, A., & Celik, S. (2008). Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology, 58(7), 1429–1440. https://doi.org/10.1007/s00254-008-1645-x
  • Kalogirou, S. A. (2001). Artificial neural networks in renewable energy systemsapplications: a review. Renewable & Sustainable Energy Reviews, 5(4), 373–401. https://doi.org/10.1016/S1364-0321(01)00006-5
  • Kaplan, G., Yildizel, S. A., Memis, S., Öztürk, & Ali, A. U. (2018). Advanced Optimization Techniques and Their Applications in Civil Engineering: The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives. Advances in Civil Engineering, 2018, 1–9. https://doi.org/10.1155/2018/8917059
  • Kashani, A. R., Chiong, R., Mirjalili, S., & Gandomi, A. H. (2020). Particle swarm optimization variants for solving geotechnical problems: Review and Comparative Analysis. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-020-09442-0
  • Kashani, A. R., Gandomi, M., Camp, C. V., & Gandomi, A. H. (2019). Optimum design of shallow foundation using evolutionary algorithms. Soft Computing, 24(2020), 6809–6833. https://doi.org/10.1007/s00500-019-04316-5
  • Kaveh, A., Hamedani, K. B., & Zaerreza, A. A. (2020). Set theoretical shuffled shepherd optimization algorithm for optimal design of cantilever retaining wall structures. Engineering with Computers, (2020). https://doi.org/10.1007/s00366-020-00999-9
  • Kaveh, A., & Soleimani, N. (2015). CBO and DPSO for optimum design of reinforced concrete cantilever retaining walls. Asian Journal of Civ Eng, 16(6), 751–774.
  • Kayadelen, C., Gunaydin, O., Fener, M., Demir, A., & Ozvan, A. (2009a). Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems with Applications, 36(9), 11814–11826. https://doi.org/10.1016/j.eswa.2009.04.008
  • Kayadelen, C., et al, Taşkıran, T., & Günaydın, O., et al (2009). Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils. Environ. Earth. Sci, 59, 109. https://doi.org/10.1007/s12665-009-0009-5
  • Kayadelen, C., Taskiran, T., Gunaydin, O., & Fener, M. (2009b). Adaptive neuro-fuzzy modelling for the swelling potential of compacted soils. Environmental Earth Science, 59(1), 109–115. https://doi.org/10.1007/s12665-009-0009-5
  • Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering, 1(1), 90–99. https://doi.org/10.1007/s11709-016-0363-9
  • Khajehzadeh, M., Taha, R. M., El-Shafie, A., & Eslami, M. (2011). Modified particle swarm optimization for optimum design of spread footing and retaining wall. Journal of Zhejiang University-Science (Applied Physics and Engineering), 2(6), 415–427. https://doi.org/10.1631/jzus.A1000252
  • Khorshidian, H., Shirazi, M. A., & Ghomi, S. F. (2019). An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock. Journal of Intelligent Manufacturing, 30(1), 163–184. https://doi.org/10.1007/s10845-016-1229-7
  • Kohestani, V. R., Bazargan-Lari, M. R., & Asgari-Marnani, J. (2017). Prediction of maximum surface settlement caused by earth pressure balance shield tunnelling using random forest. Journal of Artificial Intelligence and Data Mining, 5(1), 127–135.
  • Kolay, P. K., Rosmina, A. B., & Ling, N. W. (2008). “Settlement prediction of tropical soft soil by Artificial Neural Network (ANN)”. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) pp.1843–1848.
  • Kuo, Y. L., Jaksa, M. B., Lyamin, A. V., & Kaggwa, W. S. (2009). ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Computers andGeotechnics, 36(3), 503–516. https://doi.org/10.1016/j.compgeo.2008.07.002
  • Kusagur, A., Kokad, S. F., & Ram, B. V. S. (2010). Modeling, design and simulation of an adaptive neuro fuzzy inference system (ANFIS) for speed control of induction motor. International Journal of Computer Application, 6(10), 29–44. https://doi.org/10.5120/1123-1472
  • Li, L., Chi, S. C., & Lin, G. (2005). Improved complex method based on particle swarm optimization algorithm and its application to slope stability analysis. Rock and Soil Mechanics Wuhan, 26(9), 1393.
  • Li, L., Chi, S. C., Lin, G., & Chu, X. S. (2007). Modified particle swarm optimization algorithmand its application to the search for the critical slip surface of soil slopes. J Disaster Prev Mitig Eng, 26(9), 1393.
  • Li, L., Lin, C., & Zhang, Z. (2017). Utilization of shale-clay mixtures as a landfill liner materialto retain heavy metals. Materials and Design, 114(2017), 73–82. https://doi.org/10.1016/j.matdes.2016.10.046
  • Mahdevari, S., Shirzad Haghighat, H., & Torabi, S. R. (2013). A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation. Tunnelling and Underground Space Technology, 38, 59–68. https://doi.org/10.1016/j.tust.2013.05.002
  • Mahdevari, S., Torabi, S. R., & Monjezi, M. (2012). Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon. International Journal of Rock Mechanics and Mining Sciences, 55, 33–44. https://doi.org/10.1016/j.ijrmms.2012.06.005
  • Mahdiyar, A., Jahed Armaghani, D., Koopialipoor, M., Hedayat, A., Abdullah, A., & Yahya, K. (2020). Practical Risk Assessment of Ground Vibrations Resulting from Blasting, Using Gene Expression Programming and Monte Carlo Simulation Techniques. Applied Sciences, 10(2), 472. https://doi.org/10.3390/app10020472
  • Maier, H. R., & Dandy, G. C. (1998). The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling and Software, 13(2), 193–209. http://doi.org/10.1016/S1364-8152(98)00020-6
  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15(1), 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9
  • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and SoftwareVol, 25(8), 891–909. https://doi.org/10.1016/j.envsoft.2010.02.003
  • Maizir, H., & Kassim, K. A (2013). “Neural network application in prediction of axial bearing capacity of driven piles.” Proceedings of the International MultiConference of Engineers and Computer Scientists Vol I.
  • Marandi, S. M., Anvar, M., & Bahrami, M. (2016). Uncertainty analysis of safety factor of embankment built on stone column improved soft soil using fuzzy logic -cut technique. Computers and Geotechnics, 75(2016), 135–144.
  • Margaret, W. E., David, J. L., Roy, A. D., Anthony, H., & Adam, H. (2002). Data modelling and the application of a neural network approach to the prediction of total construction costs. Construction Management and Economics, (20), 465–472.
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervousactivity. Bulletin of Mathematical Biophysics, 52(1–2), 99–115. https://doi.org/10.1016/S0092-8240(05)80006-0
  • Mikaeil, R., Haghshenas, S. S., & Sedaghati, Z. (2019). Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel. Natural Hazards, 97(3), 1099–1113. https://doi.org/10.1007/s11069-019-03688-z
  • Mitchell, M. (1998). An introduction to genetic algorithms. https://doi.org/10.7551/mitpress/3927.001.0001
  • Mohamed, A., Emil, P., Kevin, K., Roberto, N., & Mostafa, W. (2011 October). Application of fuzzy logic in modern landfill. International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), IEEE. https://doi.org/10.1109/CIMSA.2011.6059929
  • Mohamed, A. M. O, & Hawas, Y. (2004). Neuro-fuzzy logic model for evaluating water content of sandy soils. Computer-Aided Civil and Infrastructure Engineering, 19(2004), 274–287. https://doi.org/10.1111/j.1467-8667.2004.00354.x
  • Mohamed, T., Kasa, A., & Taha, M. R. (2012). Fuzzy logic system for slope stability prediction. International Journal on Advanced Science Engineering Information Technology, 2 (2), 38–42.
  • Mohammadzadeh, D., Kazemi, S., & Mosavi, A. (2019). Evolutionary prediction model for fine-grained soils compression index using gene-expression programming. https://doi.org/10.20944/preprints201903.0049.v1
  • Murat, M. B. (2003). Neuromodex: Neural network system for modular construction decision. Journal of Computing in Civil Engineering, ASCE, 8(2), 221–223.
  • Muzzammil, M. (2010). ANFIS approach to the scour depth prediction at a bridge Abutment. Journal of Hydro informatics, 12(40), 474–485.
  • Naderpour, H., Kheyroddin, A., & Ghodrati-Amiri, G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(92), 2817–2829. https://doi.org/10.1016/j.compstruct.2010.04.008
  • Naderpour, H., Rafiean, A. H., & Fakaharian, P. (2018). Compressive strength predictionof environmentally friendly concrete using artificial neural networks. Journal of BuildingEngineering, 16, 213–219.
  • Neha, M., Ivan, G., & Arjan, B. (2016). Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses. Journal ofMedical Engineering and Physics, 38, 1083–1089. https://doi.org/10.1016/j.medengphy.2016.07.003
  • Nihat, S. I. (2009). Estimation of swell index of fine grained soils using regression equations and artificial neural networks. Scientific Research and Essay, 4(10), 1047–1056.
  • Obianyo, I. I., Anosike-francis, E. N., Odochi, G., Geng, Y., Jin, R., Peter, A., & Soboyejo, A. B. O. (2020). Multivariate Regression Models for Predicting the Compressive Strength of Bone Ash Stabilized Lateritic Soil for Sustainable Building. Construction and Building Materials, 263, 120677.
  • Olowosulu, A. T., Kaura, J. M., Murana, A. A., & Adeke, P. T. (2020). Data mining and performance prediction of flexible road pavement using fuzzy logic theory: A case of Nigeria. In chapter in Sustainable Issues in Infrastructure Engineering. First Online version Springer International Publishing https://www.springerprofessional.de/en/data-mining-and-performance-prediction-of-flexible-road-pavement/18654500
  • Oluremi, J. R., Eberemu, A. O., Ijimdiya, T. S., & Osinubi, K. J. (2019). Lateritic soil treated with waste wood ash as liner in landfill construction. Environmental & Engineering Geoscience, The Geological Society of America, 25(2), 127–139. https://doi.org/10.2113/EEG-2023
  • Onoda, T (1995). Neural network information criterion for the optimal number of hiddenunits. In: Proceedings of the International Conference on Neural Networks. Perth, Western Australia: IEEE; p. 275–280.
  • Ozer, M., Isik, N. S., & Orhan, M. (2008). Statistical and neural networkassessment of the compression index of clay-bearing soils. Bull. Eng.Geol. Environ, 67(4), 537–545. https://doi.org/10.1007/s10064-008-0168-8
  • Panwar, A., & Jha, K. N. (2019). A many-objective optimization model for construction scheduling. Construction Management and Economics, 37(12), 727–739. https://doi.org/10.1080/01446193.2019.1590615
  • Park, H. I. (2011). Study for Application of Artificial Neural Networks in Geotechnical Problems. In C. L. P. Hui (Ed.), Artificial Neural Networks - Application (pp. 303–336).
  • Pooya Nejad, F., Jaksa, M. B., Kakhi, M., & Mccabe, B. A. (2009). Prediction of pile settlement usingartificial neural networks based on standard penetration test data. Computers and Geotechnics, 36(36), 1125–1133. https://doi.org/10.1016/j.compgeo.2009.04.003
  • Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscinces and RemoteSensing, 48(12), 4164–4177. https://doi.org/10.1109/TGRS.2010.2050328
  • Pramanik, N., & Panda, K. R. (2009). Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal, 54(2), 247–260. https://doi.org/10.1623/hysj.54.2.247
  • Problems. Procedia Computer Science, 154, 260–266. https://doi.org/10.1016/j.procs.2019.06.039
  • Ranasinghe, R. A. T. M., Jaksa, M. B., Kuo, Y. L., & Nejad, F. P. (2017). Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results. Journal of Rock Mechanics and Geotechnical Engineering, 9(9), 340–349. https://doi.org/10.1016/j.jrmge.2016.11.011
  • Rangel, J. L., Iturraran-Viveros, U., Ayala, A. G., & Cervantes, F. (2005). Tunnel stability analysis during construction using a neuro-fuzzy system. International Journal of Numerical and AnalyticalMethods in Geomechanics, 29(15), 1433–1456. https://doi.org/10.1002/nag.463
  • Rani, B. S., & Kumar, C. A. (2015). A Comprehensive review on bacteria foraging optimization technique. In S. Dehuri et al Ed., Multi-objective Swarm Intelligence, Studies in Computational Intelligence 592. https://doi.org/10.1007/978-3-662-46309-3_1
  • Rodrigo-Comino, J., & Cerdà, A. (2018). Improving stock unearthing method to measure soil erosion rates in vineyards. Ecological Indicators, 85, 509–517. https://doi.org/10.1016/j.ecolind.2017.10.042
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representation by error propagation, in Parallel distributed processing: explorations in the microstructure of congestion (pp. 318–362). (D. E. Rumelhart & J. L. McClelland, eds.). MIT Press.
  • Sadi, A., Bubshait, A., Atiyah, S., & AL-Shahri, M. (2001). Themanagement of construction company overhead costs. International Journal of Project Management, 19(5), 234–244.
  • Sadrmomtazi, A., Sobhani, J., & Mirgozar, M. A. (2013). Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Construction and Building Materials, 42, 205–216. https://doi.org/10.1016/j.conbuildmat.2013.01.016
  • Saha, S., Gayen, A., Pourghasemi, H. R., & Tiefenbacher, J. P. (2019). Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environ Earth Sci, 78(649). https://doi.org/10.1007/s12665-019-8658-5
  • Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Bui, D. T. (2020). Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India. Sensors2020, 20(5), 1313. https://doi.org/10.3390/s20051313
  • Sahib, N. M., & Hussein, A. (2019). Particle swarm optimization in managing construction. Procedia Computer Science, 154, 260–266. https://doi.org/10.1016/j.procs.2019.06.039
  • Salahudeen, A. B., Ijimdiya, T. S., Eberemu, A. O., & Osinubi, K. J. (2018). Artificial neural networks prediction of compaction characteristics of black cotton soil stabilized with cement kiln dust. Journal of Soft Computing in Civil Engineering (JSCCE), 2(3), 53–74. https://doi.org/10.22115/SCCE.2018.128634.1059
  • Salahudeen, A. B., & Sadeeq, J. A. (2019 August). “California Bearing Ratio Prediction of Modified Black Clay Using Artificial Neural Networks”, Book of Proceedings, West Africa Built Environment Research (WABER) Conference, Seeking innovative and sustainable African development solutions, Ghana Academy of Arts and Sciences, Accra, Ghana, pp. 268–281. https://doi.org/10.33796/waberconference2019.19
  • Salahudeen, A. B., Sadeeq, J. A., Badamasi, A., & Onyelowe, K. C. (2020). Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks. Nigerian Journal of Engineering (NJE), 27(1), 45–58.
  • Seed, H. B., Tokimatsu, H., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedure in seismic liquefaction resistance evaluations. Geotechnical and Geological Engineering, ASCE, 111(12), 1425–1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  • Seyed, H. I., & Mansoureh, Z. (2008). “Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management (pp. 210–213). System “World Academy of Science, Engineering and Technology.
  • Seyed, V. R.-T., S-N, A., & Soo-Mi, C. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11(1), 821–844. https://doi.org/10.1080/19475705.2020.1753824
  • Sezer, A., Goktepe, B. A., & Altun, S. (2010). Adaptive neuro-fuzzy approach for sand permeability estimation. Environmental Engineering andManagement Journal, 9(2), 231–238.
  • Shahin, M. A. (2013). Artificial intelligence in geotechnical engineering: applications, modelling aspects, and future directions, in Metaheuristics in water, geotechnical and transport engineering (pp. 169–204). (X. Yang, A. H. Gandomi, S. Talatahari, & A. H. Alavi, eds.). Elsevier Inc.
  • Shahin, M. A., & Jaksa, M. B. (2006). Pullout capacity of small ground anchors by direct conepenetration test methods and neural networks. Canadian Geotechnical Journal, 43(6), 626–637. https://doi.org/10.1139/t06-029
  • Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2000). “Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks.” Research Report No. R 167, The University of Adelaide.
  • Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2001). Artificial neural network applications ingeotechnical engineering. Australian Geomechanics, 36(1), 49–62.
  • Shahin, M. A., Maier, H. R., & Jaksa, M. B. (2002). Predicting settlement of shallow foundations usingneural networks. Journal of Geotechnical and Geoenvironmental Engineering, 128(9), 785–793. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(785)
  • Shahin, M. A., Maier, H. R., & Jaksa, M. B. (2003). Settlement prediction of shallow foundations ongranular soils using B-spline neurofuzzy models. Computers and Geotechnics, 30(8), 637–647. https://doi.org/10.1016/j.compgeo.2003.09.004
  • Shahin, M. A., Maier, H. R., & Jaksa, M. B. (2004). Data division for developing neural networksapplied to geotechnical engineering. Journal of Computing in Civil Engineering, 18(2), 105–114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
  • Shibata, T., & Teparaksa, W. (1988). Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations, 28(2), 49–60. https://doi.org/10.3208/sandf1972.28.2_49
  • Singh, M., Trivedi, A., & Shukla, S. K. (2020). Fuzzy-Based Model for Predicting Strength of Geogrid-Reinforced Subgrade Soil with Optimal Depth of Geogrid Reinforcement. Transportation Infrastructure Geotechnology, 7(4), 664–683. https://doi.org/10.1007/s40515-020-00113-y
  • Smith, M. J. D. (2018). Statistical Analysis Handbook. The Winchelsea Press, Drumlin Security Ltd.
  • Sodikov, J. (2005). Cost Estimation of Highway Projects In Developing CountriesArtificial Neural Network Approach. Journal ofthe Eastern Asia Society for Transportation Studies, 6, 1036–1047.
  • Subasi, S. (2009). Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique. Sci. Res. Essays, 4(4), 289–297.
  • Su, Q., Cai, G., & Degée, H. (2017). Application of Variance Analyses Comparison in Seismic Damage Assessment of Masonry Buildings Using Three Simplified Indexes. Math. Probl. Eng, 2017, 1–15.
  • Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Proceedings of IEEE Transactions on Systems, Man and Cybernetics, 28, 15–33.
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 1985, SMC-15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399
  • Tian, D., Wang, S., & Xu, L. (2009). The application of particle swarm optimization on the search of critical slip surface. In: 2009 international conference on information engineering and computer science. IEEE, pp 1–4.
  • Tiile, R. N. (2016). Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentation. Masters Theses. Scholars’ Mine, Missouri University of Shience and Technology Library and Learning Resources. 7571.
  • Tizpa, P., Chenari, R. J., Fard, M. K., & Achado, S. L. (2014). ANN prediction of some geotechnical properties of soil from their index parameters. Arab J Geosci.
  • Uysal, F. (2020). Prediction of collapse potential of soils using gene expression programming and parametric study. Arabian Journal of Geosciences, 13(19). https://doi.org/10.1007/s12517-020-06050-x
  • Uysal, M., Akyuncu, V., Tanyildizi, H., Sumer, M., & Yildirim, H. (2020). Optimization of Durability Properties of Concrete Containing Fly Ash Using T Aguchi. s Approach and Anova Analysis, 364–382. https://doi.org/10.7764/RDLC.17.3.364
  • Van Schelt, W., Jong-Hanninen, M. K., van der Aa, J. P. C., & van Loon, W. K. P. (1994). Field and laboratory experiments with time domain reflectometry as a moisture monitoring system in road structures, in Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, IL, 386–397.
  • Wang, Y. X. (2010). Application of fuzzy mathematics to slope stability analysis. Rock and Soil Mechanics, 31(9), 3000–3004.
  • Wang, Y.-R., Chen, Y.-J., & Jeffrey Huang, C. F. (2009). “Applying Neural Network Ensemble Concepts for Modelling Project Success “proceeding of 26th International Symposium on Automation and Robotics in Construction (ISARC 2009) pp:199–204.
  • Wang, C., Gao, W., & Li, C. (2007). Particle swarm optimization technique for searching for non-circle critical slip surface in soil slopes. Sichuan Build Sci, 2007–05.
  • Wang, Y. R., & Gibson Jr, G. E. (2010). A study of preproject planning and project success using ANNs and regression models. Automation in Construction, 19(3), 341–346.
  • Yan, F., Lin, Z. B., Sobolev, K., Sobolev, K., & Sobolev, K. (2017). Evaluation and prediction of bondstrength of GFRP-bar reinforced concrete using artificial neural network optimized withgenetic algorithm. Composite Structures, 161, 441–452. https://doi.org/10.1016/j.compstruct.2016.11.068
  • Yin, Z. Y., Jin, Y. F., Shen, J. S., & Hicher, P. Y. (2018). Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. International Journal for Numerical and Analytical Methods in Geomechanics, 42(1), 70–94. https://doi.org/10.1002/nag.2714
  • Yin, K., Tong, H., Giannis, A., Chang, V. W., & Wang, J. (2016). Insights for transformation of contaminants in leachate at a tropical landfill dominated by natural attenuation. Waste Management, 53(2016), 105–115. https://doi.org/10.1016/j.wasman.2016.04.033
  • Yohanna, P., Osinubi, K. J\, Eberemu, A. O., Ijimdiya, T. S., & Salawudeen, A. T. (2020). Evaluation of Compacted Lateritic Soil – Bacillus coagulans Induced Calcite Precipitate for Landfill Application using Bacterial Foraging Optimization Algorithm. 2ndInternational Conference on Sustainable Infrastructural Development (ICSID), Theme: Sustainable Infrastructural Development (Virtual), Track 5: Geotechnics and Transportation Infrastructure,Covenant University, Ota, Ogun state, Nigeria, 27–28 July Book of Abstracts, p. 82.
  • Zounemat-Kermani, M., Beheshti, A. A., Ataie-Ashtiani, B., & Sabbagh-Yazdi, S. R. (2009). Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appllied Soft Computing, 9(2), 746–755. https://doi.org/10.1016/j.asoc.2008.09.006