1,573
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Analysis and comparison of turbulence models on wind turbine performance using SCADA data and machine learning technique

ORCID Icon, & ORCID Icon
Article: 2167345 | Received 26 Oct 2022, Accepted 06 Jan 2023, Published online: 29 Jan 2023

References

  • Aboelezz, A., Ghali, H., Elbayomi, G., & Madboli, M. (2022). A novel VAWT passive flow control numerical and experimental investigations: Guided vane airfoil wind turbine. Ocean Engineering, 257, 111704. https://doi.org/10.1016/j.oceaneng.2022.111704
  • Alom, N., Saha, U. K., & Dewan, A. (2021). In the quest of an appropriate turbulence model for analyzing the aerodynamics of a conventional Savonius (S-type) wind rotor. Journal of Renewable and Sustainable Energy, 13(2), 023313. https://doi.org/10.1063/5.0034362
  • Anup, K. C., Whale, J., Evans, S. P., & Clausen, P. D. (2020). An investigation of the impact of wind speed and turbulence on small wind turbine operation and fatigue loads. Renewable Energy, 146, 87–17. https://doi.org/10.1016/j.renene.2019.06.124
  • Balduzzi, F., Zini, M., Molina, A. C., Bartoli, G., De Troyer, T., Runacres, M. C., Ferrara, G., & Bianchini, A. (2020). Understanding the aerodynamic behavior and energy conversion capability of small darrieus vertical axis wind turbines in turbulent flows. Energies, 13(11), 2936. https://doi.org/10.3390/en13112936
  • Cappugi, L., Castorrini, A., Bonfiglioli, A., Minisci, E., & Campobasso, M. S. (2021). Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion. Energy Conversion and Management, 245, 114567. https://doi.org/10.1016/j.enconman.2021.114567
  • Castorrini, A., Gentile, S., Geraldi, E., & Bonfiglioli, A. (2022). Investigations on offshore wind turbine inflow modelling using numerical weather prediction coupled with local-scale computational fluid dynamics. Renewable and Sustainable Energy Reviews, 171, 113008. https://doi.org/10.1016/j.rser.2022.113008
  • Dong, L., Lio, W. H., & Simley, E. (2021). On turbulence models and lidar measurements for wind turbine control. Wind Energy Science, 6(6), 1491–1500. https://doi.org/10.5194/wes-6-1491-2021
  • Gambuzza, S., & Ganapathisubramani, B. (2021). The effects of free-stream turbulence on the performance of a model wind turbine. Journal of Renewable and Sustainable Energy, 13(2), 023304. https://doi.org/10.1063/5.0039168
  • Grinderslev, C., Sørensen, N. N., Horcas, S. G., Troldborg, N., & Zahle, F. (2021). Wind turbines in atmospheric flow: Fluid–structure interaction simulations with hybrid turbulence modeling. Wind Energy Science, 6(3), 627–643. https://doi.org/10.5194/wes-6-627-2021
  • Letzgus, P., Guma, G., & Lutz, T. (2022). Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification. Wind Energy Science, 7(4), 1551–1573. https://doi.org/10.5194/wes-7-1551-2022
  • Liu, J. H., & Corbita, N. T., Jr. (2021). Performance analysis of different predictive models for condition monitoring of direct drive wind turbine generator. Measurement and Control, 54(3–4), 374–384. https://doi.org/10.1177/00202940211003930
  • Liu, J. H., Corbita, N. T., Jr, Lee, R. M., & Wang, C. C. (2022). Wind turbine anomaly detection using mahalanobis distance and SCADA alarm data. Applied Sciences, 12(17), 8661. https://doi.org/10.3390/app12178661
  • Liu, Y., Li, P., & Jiang, K. (2021). Comparative assessment of transitional turbulence models for airfoil aerodynamics in the low Reynolds number range. Journal of Wind Engineering and Industrial Aerodynamics, 217, 104726. https://doi.org/10.1016/j.jweia.2021.104726
  • Martini, F., Ibrahim, H., Contreras Montoya, L. T., Rizk, P., & Ilinca, A. (2022). Turbulence Modeling of Iced Wind Turbine Airfoils. Energies, 15(22), 8325. https://doi.org/10.3390/en15228325
  • Meneveau, C. (2019). Big wind power: Seven questions for turbulence research. Journal of Turbulence, 20(1), 2–20. https://doi.org/10.1080/14685248.2019.1584664
  • Nybø, A., Gunnar Nielsen, F., & Godvik, M. (2022). Sensitivity of the dynamic response of a multimegawatt floating wind turbine to the choice of turbulence model. Wind Energy.
  • Nybø, A., Nielsen, F. G., & Godvik, M. (2021). Analysis of turbulence models fitted to site, and their impact on the response of a bottom-fixed wind turbine. Journal of Physics: Conference Series, 2018(1), 012028. https://doi.org/10.1088/1742-6596/2018/1/012028
  • Optis, M., & Perr-Sauer, J. (2019). The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production. Renewable and Sustainable Energy Reviews, 112, 27–41. https://doi.org/10.1016/j.rser.2019.05.031
  • Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-turbine and wind-farm flows: A review. Boundary-Layer Meteorology, 174(1), 1–59. https://doi.org/10.1007/s10546-019-00473-0
  • Purohit, S., Ng, E. Y. K., & Kabir, I. F. S. A. (2022). Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake. Renewable Energy, 184, 405–420. https://doi.org/10.1016/j.renene.2021.11.097
  • Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838–857. https://doi.org/10.1016/j.energy.2019.05.053
  • Ricci, A., Kalkman, I., Blocken, B., Burlando, M., & Repetto, M. P. (2020). Impact of turbulence models and roughness height in 3D steady RANS simulations of wind flow in an urban environment. Building and Environment, 171, 106617. https://doi.org/10.1016/j.buildenv.2019.106617
  • Santolamazza, A., Dadi, D., & Introna, V. (2021). A data-mining approach for wind turbine fault detection based on SCADA data analysis using artificial neural networks. Energies, 14(7), 1845. https://doi.org/10.3390/en14071845
  • Somoano, M., Battistella, T., Rodríguez-Luis, A., Fernández-Ruano, S., & Guanche, R. (2021). Influence of turbulence models on the dynamic response of a semi-submersible floating offshore wind platform. Ocean Engineering, 237, 109629. https://doi.org/10.1016/j.oceaneng.2021.109629
  • Ti, Z., Deng, X. W., & Zhang, M. (2021). Artificial Neural Networks based wake model for power prediction of wind farm. Renewable Energy, 172, 618–631. https://doi.org/10.1016/j.renene.2021.03.030
  • Yang, S., Deng, X., Ti, Z., Yan, B., & Yang, Q. (2022). Cooperative yaw control of wind farm using a double-layer machine learning framework. Renewable Energy, 193, 519–537. https://doi.org/10.1016/j.renene.2022.04.104