2,766
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

A critical overview of thin films coating technologies for energy applications

&
Article: 2179467 | Received 05 Jan 2023, Accepted 08 Feb 2023, Published online: 01 Mar 2023

References

  • Alfihed, S., Hossain, M., Alharbi, A., Alyamani, A., & Alharbi, F. H. (2013). PLD grown polycrystalline tungsten disulphide (WS2) films. Journal of Materials, 2013, 603648. https://doi.org/10.1155/2013/603648
  • Amin, N., Hossain, M. I., Hamzah, N. R., & Chelvanathan, P. “Physical and optical properties of In 2 S 3 thin films deposited by thermal evaporation technique for CIGS solar cells.” In 2011 IEEE Conference on Clean Energy and Technology (CET), pp. 63–19. IEEE, 2011.
  • Baben, M., Hans, M., Primetzhofer, D., Evertz, S., Ruess, H., & Schneider, J. M. (2017). Unprecedented thermal stability of inherently metastable titanium aluminum nitride by point defect engineering. Materials Research Letters, 5(3), 158–169. https://doi.org/10.1080/21663831.2016.1233914
  • Baloch, A. A. B., Alharbi, F. H., Grancini, G., Hossain, M. I., Nazeeruddin, M. K., & Tabet, N. (2018). Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. The Journal of Physical Chemistry C, 122(47), 26805–26815. https://doi.org/10.1021/acs.jpcc.8b07069
  • Baptista, A., Silva, F., Porteiro, J., Míguez, J., & Pinto, G. (2018). Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings, 8(11), 402. https://doi.org/10.3390/coatings8110402
  • Bernard, S., Jutteau, S., Mejaouri, S., Cacovich, S., Zimmermann, I., Yaiche, A., Gbegnon, S., Loisnard, D., Collin, S., Duchatelet, A., Sauvage, F., & Rousset, J. (2021). One‐step slot‐die coating deposition of wide‐bandgap perovskite absorber for highly efficient Solar Cells. Solar RRL, 5(9), 2100391. https://doi.org/10.1002/solr.202100391
  • Chelvanathan, P., Rahman, K. S., Hossain, M. I., Rashid, H., Samsudin, N., Mustafa, S. N., Bais, B., Akhtaruzzaman, M., & Amin, N. (2017). Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application. Thin Solid Films, 621, 240–246. https://doi.org/10.1016/j.tsf.2016.10.039
  • Dan, A., Bijalwan, P. K., Pathak, A. S., & Bhagat, A. N. (2022). A review on physical vapor deposition-based metallic coatings on steel as an alternative to conventional galvanized coatings. Journal of Coatings Technology and Research, 1–36. https://doi.org/10.1007/s11998-021-00564-z
  • Deng, Y., Chen, W., Bingxin, L., Wang, C., Kuang, T., & Yanqiu, L. (2020). Physical vapor deposition technology for coated cutting tools: a review. Ceramics International, 46(11), 18373–18390. https://doi.org/10.1016/j.ceramint.2020.04.168
  • Du, G., Yang, L., Zhang, C., Zhang, X., Rolston, N., Luo, Z., & Zhang, J. (2022). Evaporated undoped spiro‐OMeTAD enables stable perovskite solar cells exceeding 20% efficiency. In Advanced Energy Materials (pp. 2103966). Wiley-VCH GmbH, Weinheim.
  • Fievez, M., Rana, P. J. S., Koh, T. M., Manceau, M., Lew, J. H., Jamaludin, N. F., Ghosh, B., Bruno, A., Cros, S., Berson, S., Mhaisalkar, S. G., & Leong, W. L. (2021). Slot-die coated methylammonium-free perovskite solar cells with 18% efficiency. Solar Energy Materials and Solar Cells, 230, 111189. https://doi.org/10.1016/j.solmat.2021.111189
  • Garah, E., Briois, M. P., & Sanchette, F. (2022). Recent progress on high-entropy films deposited by magnetron sputtering. Crystals, 12(3), 335. https://doi.org/10.3390/cryst12030335
  • Guo, Z., Jena, A. K., Kim, G. M., & Miyasaka, T. (2022). The high open-circuit voltage of perovskite solar cells: A review. In Energy & Environmental Science (pp. 3171–3222). Jenny Nelson.
  • He, Y. Z., Han, Y. L., Zhao, Y. G., & Cao, B. S. (2002). Investigation into the flange problem of resist along the edge of substrate caused by spin coating. Microelectronic Engineering, 63(4), 347–352. https://doi.org/10.1016/S0167-93170200549-X
  • Hoang, A. T., Kairui, Q., Chen, X., & Ahn, J.-H. (2021). Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale, 13(2), 615–633. https://doi.org/10.1039/D0NR08071C
  • Holmes, C., Mike Godfrey, P. L., Mennea, Bull, D. J., Dulieu-Barton, D. J., & Mennea, P. L. (2022). Optical switching in glass fibre composite. Optics & Laser Technology, 152, 108105. https://doi.org/10.1016/j.optlastec.2022.108105
  • Hossain, M. I. (2012). Fabrication and characterization of CIGS solar cells with In2S3 buffer layer deposited by PVD technique. Chalcogenide Letters, 9(5), 185–191. https://chalcogen.ro/185_Hossain.pdf
  • Hossain, M. I., Aissa, B., Samara, A., Mansour, S. A., Broussillou, C. A., & Benito, V. B. (2021). Hydrophilic antireflection and antidust silica coatings. ACS omega, 6(8), 5276–5286. https://doi.org/10.1021/acsomega.0c05405
  • Hossain, M. I., Aïssa, B., Zimmermann, I., Nazeeruddin, M. K., & Belaidi, A. (2020). Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device. Journal of Photonics for Energy, 10(1), 015502. https://doi.org/10.1117/1.JPE.10.015502
  • Hossain, M. I., & Alharbi, F. H. (2013). Recent advances in alternative materials photovoltaics. Materials Technology, 28(1–2), 88–97. https://doi.org/10.1179/1753555712Y.0000000039
  • Hossain, M. I., Al Kubaisi, G., Aïssa, B., & Mansour, S. (2022). Probing the hydrophilic behaviour of e-beam evaporated silica thin films for PV-soiling application. Materials Science and Technology, 38(11), 753–759. https://doi.org/10.1080/02670836.2022.2063526
  • Hossain, M. I., Khandakar, A., Chowdhury, M. E. H., Ahmed, S., Nauman, M. M., & Aïssa, B. (2022). Numerical and experimental investigation of infrared optical filter based on metal oxide thin films for temperature mitigation in photovoltaics. Journal of Electronic Materials, 51(1), 179–189. https://doi.org/10.1007/s11664-021-09269-w
  • Hossain, M. I., Zakaria, Y., Zikri, A., Samara, A., Aissa, B., El-Mellouhi, F., Hasan, N. S., Belaidi, A., Mahmood, A., & Mansour, S. (2022). E-beam evaporated hydrophobic metal oxide thin films as carrier transport materials for large scale perovskite solar cells. Materials Technology, 37(4), 248–259. https://doi.org/10.1080/10667857.2020.1830551
  • Hou, G. J., García‐Tabarés, E., García, I., & Rey‐Stolle, I. (2022). High‐low refractive index stacks as antireflection coatings on triple‐junction solar cells. Progress in Photovoltaics: Research and Applications. https://doi.org/10.1002/pip.3608
  • Hsu, C.-C., Sheng-Min, Y., Lee, K.-M., Lin, C.-J., Liou, B.-Y., & Chen, F.-R. (2022). Oxidized nickel to prepare an inorganic hole transport layer for high-efficiency and stability of CH3NH3PbI3 perovskite solar Cells. Energies, 15(3), 919. https://doi.org/10.3390/en15030919
  • Huang, M., Deng, B., Dong, F., Zhang, L., Zhang, Z., & Chen, P. (2021). Substrate engineering for CVD growth of single crystal graphene. Small Methods, 5(5), 2001213. https://doi.org/10.1002/smtd.202001213
  • Hu, Q., Wang, J., Yuehui, L., Tan, R., Jia, L., & Song, W. (2022). Sputtering‐deposited thin films on textiles for solar and heat managements: a mini‐review. Physica Status Solidi (A), 219(3), 2100572. https://doi.org/10.1002/pssa.202100572
  • Kalita, G., & Umeno, M. (2022). Synthesis of graphene and related materials by microwave-excited surface wave plasma CVD methods. Applied Chemistry, 2(3), 160–184. https://doi.org/10.3390/appliedchem2030012
  • Khambunkoed, N., Homnan, S., Gardchareon, A., Chattrapiban, N., songsiriritthigul, P., Wongratanaphisan, D., & Ruankham, P. (2021). Fully-covered slot-die-coated ZnO thin films for reproducible carbon-based perovskite solar cells. Materials Science in Semiconductor Processing, 136, 106151. https://doi.org/10.1016/j.mssp.2021.106151
  • Kim, H., Chang, C. S., Lee, S., Jiang, J., Jeong, J., Park, M., Meng, Y., Ji, J., Kwon, Y., Sun, X., Kong, W., Kum, H. S., Bae, S.-H., Lee, K., Hong, Y. J., Shi, J., & Kim, J. (2022). Remote epitaxy. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-022-00122-w
  • Konar, R., & Nessim, G. D. (2022). A mini-review focusing on ambient-pressure chemical vapor deposition (AP-CVD) based synthesis of layered transition metal selenides for energy storage applications. Materials Advances, 3(11), 4471–4488. https://doi.org/10.1039/D2MA00091A
  • Lee, D.-K., & Park, N.-G. (2022). Materials and methods for high‐efficiency perovskite solar modules. Solar RRL, 6(3), 2100455. https://doi.org/10.1002/solr.202100455
  • Lee, H.-J., Seo, Y.-H., Kim, S.-S., & Seok-In, N. (2022). Slot-die processed perovskite solar cells: Effects of solvent and temperature on device performances. Semiconductor Science and Technology, 37(no. 4), 045007. https://doi.org/10.1088/1361-6641/ac52b5
  • Liang, J., Liu, Q., Tingshuai, L., Luo, Y., Siyu, L., Shi, X., Zhang, F., Asiri, A. M., & Sun, X. (2021). Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 23(8), 2834–2867. https://doi.org/10.1039/D0GC03994B
  • Limarga, A. M., & Clarke, D. R. (2009). Characterization of electron beam physical vapor‐deposited thermal barrier coatings using diffuse optical reflectance. International Journal of Applied Ceramic Technology, 6(3), 400–409. https://doi.org/10.1111/j.1744-7402.2008.02349.x
  • Li, H., Zhou, J., Tan, L., Minghao, L., Jiang, C., Wang, S., Zhao, X., Liu, Y., Zhang, Y., Ye, Y., Tress, W., & Yi, C. (2022). Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances, 8(28), eabo7422. https://doi.org/10.1126/sciadv.abo7422
  • Li, H., Zuo, C., Angmo, D., Weerasinghe, H., Gao, M., & Yang, J. (2022). Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2: CsI layer. Nano-micro Letters, 14(1), 1–12. https://doi.org/10.1007/s40820-022-00815-7
  • Lundin, D., Minea, T., & Gudmundsson, J. T. (eds). (2019). High power impulse magnetron sputtering: Fundamentals, technologies, challenges and applications. Elsevier.
  • Mahan, J. E. (2000). Physical vapor deposition of thin films. Wiley.
  • Mittal, M., Sardar, S., & Jana, A. (2021). Nanofabrication techniques for semiconductor chemical sensors. In Chaudhery, H., & Suresh, K. (Eds.), Handbook of Nanomaterials for Sensing Applications (pp. 119–137). Elsevier.
  • Mostaque, S. K., Mondal, B. K., & Hossain, J. (2022). Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell. Optik, 249, 168278. https://doi.org/10.1016/j.ijleo.2021.168278
  • Nazir, G. (2022). Seul‐Yi Lee, Jong‐Hoon Lee, Adeela Rehman, Jung‐Kun Lee, Sang Il Seok, and Soo‐Jin Park. In Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials (pp. 2204380). Wiley.
  • Nunn, W., Truttmann, T. K., & Jalan, B. (2021). A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. Journal of Materials Research, 1–19. https://doi.org/10.1557/s43578-021-00377-1
  • Padamata, S. K., Yasinskiy, A., Yanov, V., & Saevarsdottir, G. (2022). Magnetron sputtering high-entropy alloy coatings: a mini-review. Metals, 12(2), 319. https://doi.org/10.3390/met12020319
  • Plutnar, J., & Pumera, M. (2021). Applications of atomic layer deposition in design of systems for energy conversion. Small, 17(39), 2102088. https://doi.org/10.1002/smll.202102088
  • Presti, L., Francesca, A., Pellegrino, L., & Malandrino, G. (2022). Metal‐organic chemical vapor deposition of oxide perovskite films: a facile route to complex functional systems. Advanced Materials Interfaces, 9(14), 2102501. https://doi.org/10.1002/admi.202102501
  • Rashid, H., Rahman, K. S., Hossain, M. I., Nasser, A. A., Alharbi, F. H., Akhtaruzzaman, M., & Amin, N. (2019). Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application. Results in Physics, 14, 102515. https://doi.org/10.1016/j.rinp.2019.102515
  • Richards, R. D., Bailey, N. J., Liu, Y., Rockett, T. B. O., & Mohmad, A. R. (2022). GaAsBi: from molecular beam epitaxy growth to devices. Physica Status Solidi (B), 259(2), 2100330. https://doi.org/10.1002/pssb.202100330
  • Rossnagel, S. M. (2003). Thin film deposition with physical vapor deposition and related technologies. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21(5), S74–S87. https://doi.org/10.1116/1.1600450
  • Sellers, J. (1998). Asymmetric bipolar pulsed DC: The enabling technology for reactive PVD. Surface & Coatings Technology, 98(1–3), 1245–1250. https://doi.org/10.1016/S0257-89729700403-9
  • Seo, Y.-H., Cho, S.-P., Lee, H.-J., Kang, Y.-J., Kwon, S.-N., & Na, S.-I. (2022). Temperature-controlled slot-die coating for efficient and stable perovskite solar cells. Journal of Power Sources, 539, 231621. https://doi.org/10.1016/j.jpowsour.2022.231621
  • Sergievskaya, A., Chauvin, A., & Konstantinidis, S. (2022). Sputtering onto liquids: a critical review. Beilstein Journal of Nanotechnology, 13(1), 10–53. https://doi.org/10.3762/bjnano.13.2
  • Shi, Z., Haina, C., Yang, X., Liu, Z., & Sun, J. (2022). Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility. In ACS Nano (pp. 11646–11675).
  • Vaynzof, Y. (2020). The future of perovskite photovoltaics—thermal evaporation or solution processing? Advanced Energy Materials, 10(48), 2003073. https://doi.org/10.1002/aenm.202003073
  • Wadley, H. N. G., Zhou, X., Johnson, R. A., & Neurock, M. (2001). Mechanisms, models and methods of vapor deposition. Progress in Materials Science, 46(3–4), 329–377. https://doi.org/10.1016/S0079-64250000009-8
  • Wang, S., Xiaotong, L., Jinbo, W., Wen, W., & Yabing, Q. (2018). Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: a progress review. Current Opinion in Electrochemistry, 11, 130–140. https://doi.org/10.1016/j.coelec.2018.10.006
  • Wu, P., Jun, H., & Zhang, F. (2022). Vacuum thermal evaporation saved MA-free perovskite. Joule, 6(7), 1394–1396. https://doi.org/10.1016/j.joule.2022.06.010
  • Xu, K., Al-Ashouri, A., Peng, Z.-W., Köhnen, E., Hempel, H., Akhundova, F., Marquez, J. A., Tockhorn, P., Shargaieva, O., Ruske, F., Zhang, J., Dagar, J., Stannowski, B., Unold, T., Abou-Ras, D., Unger, E., Korte, L., & Albrecht, S. (2022). Slot-die coated triple-halide perovskites for efficient and scalable perovskite/silicon tandem solar cells. ACS Energy Letters, 7(10), 3600–3611. https://doi.org/10.1021/acsenergylett.2c01506
  • Yang, Z., Zhang, W., Shaohang, W., Zhu, H., Liu, Z., Liu, Z., Jiang, Z., Chen, R., Zhou, J., Lu, Q., Xiao, Z., Shi, L., Chen, H., Ono, L. K., Zhang, S., Zhang, Y., Qi, Y., Han, L., & Chen, W. (2021). Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 7(18), eabg3749. https://doi.org/10.1126/sciadv.abg3749
  • Yao, S., Dong, Y.-J., & Du, -R.-R. (2022). Molecular beam epitaxial growth and electronic transport of GaInSb/GaSb (111) quantum wells. AIP Advances, 12(4), 045026. https://doi.org/10.1063/5.0083541
  • Yi, K., Liu, D., Chen, X., Yang, J., Wei, D., Liu, Y., & Wei, D. (2021). Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Accounts of Chemical Research, 54(4), 1011–1022. https://doi.org/10.1021/acs.accounts.0c00757
  • Zakaria, Z., Kadir, A. M. A., Chelvanathan, P., Hossain, M. I., Zulkefle, A. A., Basar, M. F., Salim, S. N. S., Nayan, N., & Zakaria, S. (2019). Investigation of sulfurization time duration process effects on thermally evaporated CZTS absorber layer for photovoltaic application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 61(2), 253–261. https://akademiabaru.com/submit/index.php/arfmts/article/view/2677/1741
  • Zhao, S., Zhang, Q., Parimoo, H., & Yin, X. (2022). Recent progress on molecular beam epitaxy of AlGaN nanowires for deep ultraviolet light emitting devices. ECS Transactions, 108(6), 3. https://doi.org/10.1149/10806.0003ecst
  • Zhu, X., Jianqiang, W., Wei, L., Liu, C., Zhang, J., & Songbai, H. (2022). Exploring epitaxial growth of ZnTe thin films on Si substrates. Vacuum, 202, 111163. https://doi.org/10.1016/j.vacuum.2022.111163