1,258
Views
5
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Mechanical, thermal, and morphological properties of low-density polyethylene nanocomposites reinforced with montmorillonite: Fabrication and characterizations

ORCID Icon, &
Article: 2204550 | Received 10 Mar 2023, Accepted 15 Apr 2023, Published online: 23 Apr 2023

References

  • Abulyazied, D. E., & Ene, A. (2021). An investigative study on the progress of nanoclay-reinforced polymers: preparation, properties, and applications: A review. Polymers (Basel), 13, 4401. https://doi.org/10.3390/polym13244401
  • Alhazmi, W. H., Jazaa, Y., Mousa, S., Abd Elhady, A. A., & Sallam, H. E. M. (2021). Tribological and mechanical properties of epoxy reinforced by hybrid nanoparticles. Latin American Journal of Solids and Structures, 18(3). https://doi.org/10.1590/1679-78256384
  • Alkaron, W. A., Hamad, S. F., Sabri, M. M., & Vannini, M. (2023). Studying the fabrication and characterization of polymer composites reinforced with waste eggshell powder. Advances in Polymer Technology, 2023, 1–13. https://doi.org/10.1155/2023/7640478
  • Almansoori, A., Abrams, K. J., Al-Rubaye, A. D. G., Majewski, C., & Rodenburg, C. (2019). Novel plasma treatment for preparation of laser sintered nanocomposite parts. Additive Manufacturing, 25, 297–306. https://doi.org/10.1016/j.addma.2018.11.016
  • Almansoori, A., Majewski, C., & Rodenburg, C. (2017). Nanoclay/Polymer composite powders for use in laser sintering applications: effects of nanoclay plasma treatment. JOM, 69(11), 2278–2285. https://doi.org/10.1007/s11837-017-2408-5
  • Al Rashid, A., Khan, S. A., Al-Ghamdi, S. G., & Koç, M. (2021). Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications. Journal of Materials Research and Technology, 14, 910–941. https://doi.org/10.1016/j.jmrt.2021.07.016
  • Althahban, S., Alomari, A. S., Sallam, H.E. -D.M., & Jazaa, Y. (2023). An investigation of wear, mechanical, and water sorption/solubility behaviors of a commercial restorative composite containing nano-additives. Journal of Materials Research and Technology, 23, 491–502. https://doi.org/10.1016/j.jmrt.2023.01.025
  • Chang, M. -K. (2015). Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. Journal of Industrial and Engineering Chemistry, 27, 96–101. https://doi.org/10.1016/j.jiec.2014.11.048
  • Chang, M. K.; Li, S. J.; Wu, K. S. A study of strength and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. In Proceedings of the IEEE international conference on industrial engineering and operational management. Kuala Lumpur, Malaysia;. 2011; pp. 22–24.
  • Chaurasia, A., Verma, A., Parashar, A., & Mulik, R. S. (2019). Experimental and computational studies to analyze the effect of h-bn nanosheets on mechanical behavior of h-BN/Polyethylene Nanocomposites. The Journal of Physical Chemistry C, 123(32), 20059–20070. https://doi.org/10.1021/acs.jpcc.9b05965
  • Chi, Q., Ma, T., Dong, J., Cui, Y., Zhang, Y., Zhang, C., Xu, S., Wang, X., & Lei, Q. (2017). Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-03273-z
  • Dadfar, S. M. A., Alemzadeh, I., Dadfar, S. M. R., & Vosoughi, M. (2011). Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Materials & Design, 32(4), 1806–1813. https://doi.org/10.1016/j.matdes.2010.12.028
  • Durmuş, A., Woo, M., Kaşgöz, A., Macosko, C. W., & Tsapatsis, M. (2007). Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. European Polymer Journal, 43(9), 3737–3749. https://doi.org/10.1016/j.eurpolymj.2007.06.019
  • El-Bagory, T. M. A. A., Sallam, H. E. M., & Younan, M. Y. A. (2021). Effect of Loading Rate and Pipe Wall Thickness on the Strength and Toughness of Welded and Unwelded Polyethylene Pipes. Journal Press Vessel Technol, 143(1). https://doi.org/10.1115/1.4047444
  • Goswami, T. K., & Mangaraj, S. (2011). Advances in polymeric materials for modified atmosphere packaging (MAP). In Lagarón, J. M. (Ed.), Multifunctional and nanoreinforced polymers for food packaging (pp. 163–242). Woodhead Publishing. 9781845697389.
  • Hiremath, A., Murthy, A. A., Thipperudrappa, S., KN, B., & Jones, I. P. (2021). Nanoparticles filled polymer nanocomposites: A technological review. Cogent Eng, 8(1), 1991229. https://doi.org/10.1080/23311916.2021.1991229
  • Jain, P. K., Pandey, P. M., & Rao, P. V. M. (2010). Selective laser sintering of clay‐reinforced polyamide. Polyamide Compose, 31, 732–743. https://doi.org/10.1002/pc.20854
  • Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., & Jasiuk, I. (2005). Experimental trends in polymer nanocomposites—a review. Mater Science Engineering, 393(1–2), 1–11. https://doi.org/10.1016/j.msea.2004.09.044
  • Khan, Z. I., Habib, U., Mohamad, Z. B., Rahmat, A. R. B., & Abdullah, N. A. S. B. (2022). Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review. Alexandria Eng J, 61(2), 975–990. https://doi.org/10.1016/j.aej.2021.06.015
  • Kim, B., Koncar, V., & Devaux, E. (2004). Electrical properties of conductive polymers: PET nanocomposites fibres. AUTEX Resource Journal, 4(1), 9–13.
  • Kim, G. -M., Lee, D. -H., Hoffmann, B., Kressler, J., & Stöppelmann, G. (2001). Influence of nanofillers on the deformation process in layered silicate/Polyamide-12 Nanocomposites. Polymer (Guildf), 42, 1095–1100. https://doi.org/10.1016/S0032-3861(00)00468-7
  • Kudva, A., Gt, M., Pai, K. D., & Jones, I. P. (2022). Physical, Thermal, mechanical, sound absorption and vibration damping characteristics of natural fiber reinforced composites and hybrid fiber reinforced composites: A review. Cogent Eng, 9(1), 2107770. https://doi.org/10.1080/23311916.2022.2107770
  • Lee, H. -T., & Lin, L. -H. (2006). Waterborne polyurethane/clay nanocomposites: Novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules, 39(18), 6133–6141. https://doi.org/10.1021/ma060621y
  • Li, T., Sun, H., Lei, F., Li, D., Leng, J., Chen, L., Huang, Y., & Sun, D. (2019). High performance linear low density polyethylene nanocomposites reinforced by two-dimensional layered nanomaterials. Polymer (Guildf), 172, 142–151. https://doi.org/10.1016/j.polymer.2019.03.072
  • Liu, J., Zhou, K., Wen, P., Wang, B., Hu, Y., & Gui, Z. (2015). The influence of multiple modified mmt on the thermal and fire behavior of poly (lactic acid) nanocomposites. Polymers for Advanced Technologies, 26(6), 626–634. https://doi.org/10.1002/pat.3497
  • McNally, T., Murphy, W. R., Lew, C. Y., Turner, R. J., & Brennan, G. P. (2003). Polyamide-12 layered silicate nanocomposites by melt blending. Polymer (Guildf), 44, 2761–2772. https://doi.org/10.1016/S0032-3861(03)00170-8
  • Merah, N., Ashraf, F., & Shaukat, M. M. (2022). Mechanical and moisture barrier properties of epoxy–nanoclay and hybrid epoxy–nanoclay glass fibre composites: A Review. Polymers (Basel), 14, 1620. https://doi.org/10.3390/polym14081620
  • Merinska, D., Kubisova, H., Kalendová, A., Svoboda, P., & Hromadkova, J. (2012). Processing and properties of polyethylene/montmorillonite nanocomposites. Journal Thermoplast Compose Mater, 25(1), 115–131. https://doi.org/10.1177/0892705711404939
  • Mittal, V. (2013). Polypropylene nanocomposites with thermally stable phosphonium-and pyridinium-modified layered silicates: Thermal, mechanical and gas barrier properties. Journal Thermoplast Compose Mater, 26(8), 1082–1099. https://doi.org/10.1177/0892705711433439
  • Mohammad Mehdipour, N., Garmabi, H., & Jamalpour, S. (2019). Effect of Nanosize CaCO3 and nanoclay on morphology and properties of linear pp/branched pp blend foams. Polymer Compose, 40(S1), E227–241. https://doi.org/10.1002/pc.24611
  • Ray, S. S., & Okamoto, M. (2003). Polymer/Layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  • Reddy, B. (2011). Advances in diverse industrial applications of nanocomposites. BoD–Books on Demand.
  • Rezgar, H., Taher, A., Ali, D., & Richard, E. L. (2019). Thermal conductivity of low density polyethylene foams Part I: Comprehensive study of theoretical models. Journal of Thermal Science, 28(4), 745–754. https://doi.org/10.1007/s11630-019-1135-3
  • Shnean, Z. Y. (2005). Improvement of locally produced low-density polyethylene. University of Technology.
  • Slaný, M., Jankovič, Ľ., & Madejová, J. (2019). Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Applied Clay Science, 176, 11–20. https://doi.org/10.1016/j.clay.2019.04.016
  • Standard, A. (2009). E1225-04 Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. ASTM International. https://doi.org/10.1520/E1225-13
  • Standard, A. (2014). Standard Test method for tensile properties of plastics. ASTM International. https://doi.org/10.1520/D0638-14
  • Standard, A. (2015). D2240-15 Standard Test Method for Rubber Property - Durometer Hardness. ASTM International. https://doi.org/10.1520/D2240-15R21
  • Šupová, M., Martynková, G. S., & Barabaszová, K. (2011). Effect of nanofillers dispersion in polymer matrices: A review. Sci Adv Mater, 3(1), 1–25. https://doi.org/10.1166/sam.2011.1136
  • Venkatesan, N., & Bhaskar, G. B. (2021). Study on mechanical testing of various nanoclay reinforced with high density polyethylene nanocomposites. International Journal of Applied Engineering Research, 16(3), 220–227.
  • Verma, A., Kumar, R., & Parashar, A. (2019). Enhanced thermal transport across a bi-crystalline graphene–polymer interface: An atomistic approach. Physical Chemistry Chemical Physics: PCCP, 21(11), 6229–6237. https://doi.org/10.1039/C9CP00362B
  • Verma, A., Parashar, A., & Packirisamy, M. (2019). Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Applied Surface Science, 470, 1085–1092. https://doi.org/10.1016/j.apsusc.2018.11.218
  • Yas, M. H., Shahrani Korani, H., & Zare Jouneghani, F. (2020). Studying the mechanical and thermal properties of polymer nanocomposites reinforced with montmorillonite nanoparticles using micromechanics method. Journal Solid Mechanical, 12(1), 90–101.
  • Zarr, R. R. (2001). A history of testing heat insulators at the national institute of standards and technology. ASHRAE Trans, 107(2), 661–671.
  • Zazoum, B., Triki, E., & Bachri, A. (2020). Modeling of mechanical properties of clay-reinforced polymer nanocomposites using deep neural network. Materials (Basel), 13, 4266. https://doi.org/10.3390/ma13194266
  • Zhang, X., Zhang, J., & Wang, R. (2019). Thermal and mechanical behavior of wood plastic composites by addition of graphene nanoplatelets. Polymers (Basel), 11(8), 1365. https://doi.org/10.3390/polym11081365