84
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Effect of austempering parameters and manganese content on the machinability of austempered ductile iron produced using novel method

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2378871 | Received 15 Mar 2024, Accepted 04 Jul 2024, Published online: 17 Jul 2024

References

  • Artola, G., Gallastegi, I., Izaga, J., Barreña, M., & Rimmer, A. (2017). Austempered ductile iron (ADI) alternative material for high-performance applications. International Journal of Metalcasting, 11(1), 131–135. https://doi.org/10.1007/s40962-016-0085-8
  • ASTM A897/A897M-15. (2015). Standard specification for austempered ductile iron castings, Annual Book of ASTM Standards, Vol. 01.02. ASTM International.
  • ASTM E10-18. (2018). Standard Test Method for Brinell Hardness of Metallic Materials, Vol. 01.02. ASTM International.
  • Bayati, H., & Elliot, R. (1995). Influence of austenitising temperature on mechanical properties of high manganese alloyed ductile iron. Materials Science and Technology, 11(9), 908–913. https://doi.org/10.1179/mst.1995.11.9.908
  • Bendikiene, R., Ciuplys, A., Cesnavicius, R., Jutas, A., Bahdanovich, A., Marmysh, D., Nasan, A., Shemet, L., & Sherbakov, S. (2021). Influence of austempering temperatures on the microstructure and mechanical properties of austempered ductile cast iron. Metals, 11(6), 967. https://doi.org/10.3390/met11060967
  • Çelik, Y. H., Kilickap, E., & Güney, M. (2017). Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6), 2085–2093. https://doi.org/10.1007/s40430-016-0607-6
  • Cemal Cakir, M., & Isik, Y. (2008). Investigating the machinability of austempered ductile irons having different austempering temperatures and times. Materials & Design, 29(5), 937–942. https://doi.org/10.1016/j.matdes.2007.04.002
  • Dakre, V., Peshwe, D. R., Pathak, S. U., & Likhite, A. (2017). Mechanical characterization of austempered ductile iron obtained by two step austempering process. Transactions of the Indian Institute of Metals, 70(9), 2381–2387. https://doi.org/10.1007/s12666-017-1099-5
  • Dasgupta, R. K., Mondal, D. K., & Chakrabarti, A. K. (2013). Evolution of microstructures during austempering of ductile irons alloyed with manganese and copper. Metallurgical and Materials Transactions A, 44(3), 1376–1387. https://doi.org/10.1007/s11661-012-1502-0
  • Elsayed, A. H., Megahed, M. M., Sadek, A. A., & Abouelela, K. M. (2009). Fracture toughness characterization of austempered ductile iron produced using both conventional and two-step austempering processes. Materials & Design, 30(6), 1866–1877. https://doi.org/10.1016/j.matdes.2008.09.013
  • Francucci, G., Sikora, J., & Dommarco, R. (2008). Abrasion resistance of ductile iron austempered by the two step process. Materials Science and Engineering: A, 485(1-2), 46–54. https://doi.org/10.1016/j.msea.2007.07.081
  • Gecu, R. (2022). Microstructure, mechanical, and wear properties of Al-alloyed austempered ductile irons. Tribology Transactions, 65(5), 952–962. https://doi.org/10.1080/10402004.2022.2117112
  • Górny, M., Gondek, Ł., Angella, G., Tyrała, E., Kawalec, M., & Bitka, A. (2023). Structural stability of thin-walled austempered ductile iron castings. Archives of Civil and Mechanical Engineering, 23(2), 79. https://doi.org/10.1007/s43452-022-00597-0
  • Górny, M., Gondek, Ł., Tyrała, E., Angella, G., & Kawalec, M. (2021). Structure homogeneity and thermal stability of austempered ductile iron. Metallurgical and Materials Transactions A, 52(6), 2227–2237. https://doi.org/10.1007/s11661-021-06214-8
  • Hegde, A., & Sharma, S. (2018). Machinability study of manganese alloyed austempered ductile iron. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(7), 338. https://doi.org/10.1007/s40430-018-1258-6
  • Hsu, C., & Chuang, T. (2001). Influence of stepped austempering process on the fracture toughness of austempered ductile iron. Metallurgical and Materials Transactions A, 32(10), 2509–2514. https://doi.org/10.1007/s11661-001-0040-y
  • Ingxu, W., Barber, G. C., Qiu, F., Zou, Q., & Yang, H. (2020). A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. Journal of Materials Research and Technology, 9(1), 1054–1069. https://doi.org/10.1016/j.jmrt.2019.10.074
  • ISO 3685: 1993 (E). (1993). Tool-life testing with single point tools.
  • ISO 4287. (1997). Geometrical product specifications (GPS) – surface texture: Profile method – terms, definitions and surface texture parameters.
  • Liu, C., Du, Y., Wang, X., Zheng, Q., Zhu, X., Zhang, D., Liu, D., Yang, C., & Jiang, B. (2023). Comparison of the tribological behavior of quench-tempered ductile iron and austempered ductile iron with similar hardness. Wear, 520-521pp, 204668. https://doi.org/10.1016/j.wear.2023.204668
  • Nalcaci, B., Davut, K., Neite, M., Münstermann, S., & Erdogan, M. (2023). Influence of partitioning treatment on microstructure and mechanical properties of an alloyed ductile iron austempered at different temperatures. Materials Testing, 65(6), 896–910. https://doi.org/10.1515/mt-2022-0421
  • Nan, R., Fu, H., Yang, P., Lin, J., & Guo, X. (2020). Microstructure evolution and wear resistance of Cu-bearing carbidic austempered ductile iron after austempering. Journal of Materials Engineering and Performance, 29(4), 2440–2459. https://doi.org/10.1007/s11665-020-04788-9
  • Olawale, J. O., & Oluwasegun, K. M. (December 29, 2016). Austempered ductile iron (ADI): A Review. ASTM International. Materials Performance and Characterization, 5(1), 289–311. 2016. https://doi.org/10.1520/MPC20160053
  • Pereira, L., Amaral, R. F. d., Wolfart, M., & Barcellos, V. K. d (2020). Microstructural and mechanical properties of Cu-Ni-Mn-Mo austempered ductile iron obtained from two-step hot air austempering. Journal of Materials Research and Technology, 9(3), 3055–3063. https://doi.org/10.1016/j.jmrt.2020.01.036
  • Putatunda, S. K. (2001). Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Materials Science and Engineering: A, 315(1-2), 70–80. https://doi.org/10.1016/S0921-5093(01)01210-2
  • Putatunda, S. K., & Gadicherla, P. K. (2000). Effect of austempering time on mechanical properties of a low manganese austempered ductile iron. Journal of Materials Engineering and Performance, 9(2), 193–203. https://doi.org/10.1361/105994900770346150
  • Sylvester, O. O., Oyetunji, A., Alaneme, K. K., & Olubambi, P. A. (2020). Structural characterization and mechanical properties of pearlite – Enhanced micro-alloyed ductile irons. Journal of King Saud University - Engineering Sciences, 32(3), 205–210. https://doi.org/10.1016/j.jksues.2018.11.008
  • Zhang, J., Zhang, N., Zhang, M., Lu, L., Zeng, D., & Song, Q. (2014). Microstructure and mechanical properties of austempered dutcile iron with different strength grades. Materials Letters, 119, 47–50. https://doi.org/10.1016/j.matlet.2013.12.086
  • Zhiwang, S., Xiaohui, Z., Yufan, S., Hanguang, F., Xingye, G., & Jian, L. (2022). Microstructure and properties of high manganese carbidic austempered ductile iron. Transactions of the Indian Institute of Metals, 75(3), 833–842. https://doi.org/10.1007/s12666-021-02476-3
  • Zimba, J., Simbi, D. J., & Navara, E. (2003). Austempered ductile iron: An alternative material for earth moving components. Cement and Concrete Composites, 25(6), 643–649. https://doi.org/10.1016/S0958-9465(02)00078-1