2,558
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigation of adulteration of sunflower oil with thermally deteriorated oil using Fourier transform mid-infrared spectroscopy and chemometrics

ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing Editor)
Article: 1020254 | Received 03 Dec 2014, Accepted 13 Feb 2015, Published online: 13 Mar 2015

References

  • Abdi, H. , & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics , 2 , 433–459.
  • Aladedunye, F. , & Przybylski, R. (2014). Performance of palm olein and modified rapeseed, sunflower, and soybean oils in intermittent deep-frying. European Journal of Lipid Science and Technology , 116 , 144–152. doi:10.1002/ejlt.201300284
  • Allouche, Y. , Jiménez, A. , Gaforio, J. J. , Uceda, M. , & Beltrán, G. (2007). How heating affects extra virgin olive oil quality indexes and chemical composition. Journal of Agricultural and Food Chemistry , 55 , 9646–9654. doi:10.1021/jf070628u
  • Bendini, A. , Cerretani, L. , Di Virgilio, F. , Belloni, P. , Bonoli-Carbognin, M. , & Lercker, G. (2007). Preliminary evaluation of the application of the ftir spectroscopy to control the geographic origin and quality of virgin olive oils. Journal of Food Quality , 30 , 424–437. doi:10.1111/j.1745-4557.2007.00132.x
  • Bendini, A. , Cerretani, L. , Di Virgilio, F. , Belloni, P. , Lercker, G. , & Toschi, T. G. (2007). In-process monitoring in industrial olive mill by means of FT-NIR. European Journal of Lipid Science and Technology , 109 , 498–504. doi:10.1002/ejlt.200700001
  • Brühl, L. (2014). Fatty acid alterations in oils and fats during heating and frying. European Journal of Lipid Science and Technology , 116 , 707–715. doi:10.1002/ejlt.201300273
  • Cheman, Y. B. , Syahariza, Z. A. , Mirghani, M. E. S. , Jinap, S. , & Bakar, J. (2005). Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chemistry , 90 , 815–819. doi:10.1016/j.foodchem.2004.05.029
  • De Luca, M. , Oliverio, F. , Ioele, G. , & Ragno, G. (2009). Multivariate calibration techniques applied to derivative spectroscopy data for the analysis of pharmaceutical mixtures. Chemometrics and Intelligent Laboratory Systems , 96 , 14–21. doi:10.1016/j.chemolab.2008.10.009
  • Downey, G. (1998). Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics. TrAC Trends in Analytical Chemistry , 17 , 418–424. doi:10.1016/S0165-9936(98)00042-9
  • Field, A. P. (2005). Discovering statistics using SPSS . London: Sage.
  • Frankel, E. N. (2010). Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. Journal of Agricultural and Food Chemistry , 58 , 5991–6006. doi:10.1021/Jf1007677
  • Gómez-Alonso, S. , Fregapane, G. , Salvador, M. D. , & Gordon, M. H. (2003). Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. Journal of Agricultural and Food Chemistry , 51 , 667–672. doi:10.1021/jf025932w
  • Gonçalves, R. P. , Março, P. H. , & Valderrama, P. (2014). Thermal edible oil evaluation by UV–Vis spectroscopy and chemometrics. Food Chemistry , 163 , 83–86. doi:10.1016/j.foodchem.2014.04.109
  • Gouvinhas, I. , de Almeida, J. M. M. M. , Carvalho, T. , Machado, N. , & Barros, A. I. R. N. A. (2015). Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chemistry , 174 , 226–232. doi:10.1016/j.foodchem.2014.11.037
  • Gouvinhas, I. , Machado, N. , Carvalho, T. , de Almeida, J. M. M. M. , & Barros, A. I. R. N. A. (2015). Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta , 132 , 829–835. doi:10.1016/j.talanta.2014.10.042
  • Guillén, M. & Cabo, N. (1997). Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists Society , 74 , 1281–1286. doi:10.1007/s11746-997-0058-4
  • Karoui, R. , Downey, G. , & Blecker, C. (2010). Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships—A review. Chemical Reviews , 110 , 6144–6168. doi:10.1021/cr100090 k
  • Lerma-García, M. J. , Ramis-Ramos, G. , Herrero-Martínez, J. M. , & Simó-Alfonso, E. F. (2010). Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chemistry , 118 , 78–83. doi:10.1016/j.foodchem.2009.04.092
  • Liang, Y.-Z. , & Kvalheim, O. M. (1996). Robust methods for multivariate analysis—A tutorial review. Chemometrics and Intelligent Laboratory Systems , 32 (1), 1–10. doi:10.1016/0169-7439(95)00006-2
  • Machado, M. , Machado, N. , Gouvinhas, I. , Cunha, M. , de Almeida, J. M. M. , & Barros, A. R. N. A. (2014). Quantification of chemical characteristics of olive fruit and oil of cv Cobrançosa in two ripening stages using MIR spectroscopy and chemometrics. Food Analytical Methods , 1–9. doi:10.1007/s12161-014-0017-2
  • Marini, F. , Bucci, R. , Ginevro, I. , & Magrì, A. L. (2009). Coupling of IR measurements and multivariate calibration techniques for the determination of enantiomeric excess in pharmaceutical preparations. Chemometrics and Intelligent Laboratory Systems , 97 , 52–63. doi:10.1016/j.chemolab.2008.07.012
  • Miller, J. N. , & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry . Edinburgh: Pearson.
  • Movasaghi, Z. , Rehman, S. , & Rehman, I. U. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews , 43 , 134–179. doi:10.1080/05704920701829043
  • Moya Moreno, M. , Olivares, D. M. , Lopez, F. J. A. , Adelantado, J. V. G. , & Reig, F. B. (1999). Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy. Talanta , 50 , 269–275.10.1016/S0039-9140(99)00034-X
  • Naes, T. I., T. , Fearn, T. , & Davies, A. M. (2002). A user friendly guide to multivariate calibration and classification . London: NIR Publications.
  • Nunes, A. , Martins, J. , Barros, A. , Galvis-Sánchez, A. , & Delgadillo, I. (2009). Estimation of olive oil acidity using FT-IR and partial least squares regression. Sensing and Instrumentation for Food Quality and Safety , 3 , 187–191. doi:10.1007/s11694-009-9084-2
  • Pinto, R. C. , Locquet, N. , Eveleigh, L. , & Rutledge, D. N. (2010). Preliminary studies on the mid-infrared analysis of edible oils by direct heating on an ATR diamond crystal. Food Chemistry , 120 , 1170–1177. doi:10.1016/j.foodchem.2009.11.053
  • Roggo, Y. , Chalus, P. , Maurer, L. , Lema-Martinez, C. , Edmond, A. , & Jent, N. (2007). A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis , 44 , 683–700. doi:10.1016/j.jpba.2007.03.023
  • Román Falcó, I. P. , Grané Teruel, N. , Prats Moya, S. , & Martín Carratalá, M. L. (2012). Kinetic study of olive oil degradation monitored by Fourier transform infrared spectrometry. Application to oil characterization. Journal of Agricultural and Food Chemistry , 60 , 11800–11810. doi:10.1021/jf3035918
  • Romera-Fernández, M. , Berrueta, L. A. , Garmón-Lobato, S. , Gallo, B. , Vicente, F. , & Moreda, J. M. (2012). Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Talanta , 88 , 303–310. doi:10.1016/j.talanta.2011.10.045
  • Rossell, J. B. (2001). Frying, improving quality . Cambridge: Woodhead Publishing.10.1201/9781439822951
  • Sanibal, E. A. A. , & Mancini-Filho, J. (2004). Frying oil and fat quality measured by chemical, physical, and test kit analyses. Journal of the American Oil Chemists Society , 81 , 847–852. doi:10.1007/s11746-004-0990-8
  • Smith, B. C. (2002). 4–Multiple components II: Chemometric methods and factor analysis. In B. C. Smith (Ed.), Quantitative spectroscopy: theory and practice (pp. 125–179). Amsterdam: Academic Press.10.1016/B978-012650358-6/50005-1
  • Stender, S. , & Dyerberg, J. (2004). Influence of trans fatty acids on health. Annals of Nutrition and Metabolism , 48 , 61–66. doi:10.1159/000075591
  • Stevens, J. P. (2002). Applied multivariate statistics for the social sciences . Hillsdale, NJ: Erlbaum.
  • Stier, R. F. (2001). The measurement of frying oil quality and authenticity. Frying: Improving Quality . Boca Raton, FL: CRC Press.
  • Tena, N. , Aparicio, R. , & García-González, D. L. (2009). Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content. Journal of Agricultural and Food Chemistry , 57 , 9997–10003. doi:10.1021/jf9012828
  • Vlachos, N. , Skopelitis, Y. , Psaroudaki, M. , Konstantinidou, V. , Chatzilazarou, A. , & Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta , 574 , 459–465. doi:10.1016/j.aca.2006.05.034
  • Wang, L. , Lee, F. , Wang, X. , & He, Y. (2006). Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chemistry , 95 , 529–536. doi:10.1016/j.foodchem.2005.04.015
  • Wentzell, P. , & Vega Montoto, L. (2003). Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemometrics and Intelligent Laboratory Systems , 65 , 257–279. doi:10.1016/S0169-7439(02)00138-7
  • Zhang, Q. , Liu, C. , Sun, Z. , Hu, X. , Shen, Q. , & Wu, J. (2012). Authentication of edible vegetable oils adulterated with used frying oil by Fourier transform infrared spectroscopy. Food Chemistry , 132 , 1607–1613. doi:10.1016/j.foodchem.2011.11.129
  • Zhang, Q. , Saleh, A. M. , & Shen, Q. (2013). Discrimination of edible vegetable oil adulteration with used frying oil by low field nuclear magnetic resonance. Food and Bioprocess Technology , 6 , 2562–2570. doi:10.1007/s11947-012-0826-5