36,848
Views
280
CrossRef citations to date
0
Altmetric
Review Article

Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review

, & | (Reviewing Editor)
Article: 1127500 | Received 24 Oct 2015, Accepted 30 Nov 2015, Published online: 19 Jan 2016

References

  • Aeron, A., Kumar, S., Pandey, P., & Maheshwari, D. K. (2011). Emerging role of plant growth promoting rhizobacteria in agrobiology. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 1–36). Springer Berlin Heidelberg. doi:10.1007/978-3-642-18357-7_1
  • Ahmad, P., & Prasad, M. N. V. (2011). Environmental adaptations and stress tolerance of plants in the era of climate change. Berlin: Springer Science & Business Media.
  • Alexander, M. (1977). Introduction to soil microbiology (2nd ed.). New York, NY: Wiley.
  • Alexandre, G., Jacoud, C., Faure, D., & Bally, R. (1996). Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere. FEMS Microbiology Ecology, 19, 271–278. doi:10.1111/j.1574-6941.1996.tb00219.x
  • Ali, S., Charles, T. C., & Glick, B. R. (2012). Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 113, 1139–1144. doi:10.1111/j.1365-2672.2012.05409.x
  • Amara, U., Khalid, R., & Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 87–103). Springer International. doi:10.1007/978-3-319-24654-3
  • Antoun, H., & Prévost, D. (2006). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Springer Netherlands. doi:10.1007/1-4020-4152-7_1
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Arshad, M., & Frankenberger, W. T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 46–152.
  • Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175, 532–538. doi:10.1007/BF00393076
  • Azooz, M. M., Youssef, A. M., & Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3, 253–264. doi:10.5897/IJPPB11.052
  • Banik, S., & Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil, 69, 353–364. doi:10.1007/BF02372456
  • Barber, S. A. (1995). Soil nutrient bioavailability: A mechanistic approach. New York, NY: Wiley.
  • Bashan, Y., & Holguin, G. (1998). Proposal for the division of plant growth-promoting rhizobacteria into two classifications: Biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology and Biochemistry, 30, 1225–1228. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=GB199705199710.1016/S0038-0717(97)00187-9
  • Bastián, F., Cohen, A., Piccoli, P., Luna, V., Bottini, R., & Baraldi, R. (1998). Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, 24, 7–11. doi:10.1023/A:1005964031159
  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350. doi:10.1007/s11274-011-0979-9
  • Buch, A., Archana, G., & Naresh-Kumar, G. (2008). Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Research in Microbiology, 159, 635–642. doi:10.1016/j.resmic.2008.09.012
  • Budi, S. W., van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., & Gianinazzi, S. (2000). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology, 15, 191–199. doi:10.1016/S0929-1393(00)00095-0
  • Burdman, S., Jurkevitch, E., Okon, Y., Subba-Rao, N. S., & Dommergues, Y. R. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subba Rao & Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (Vol. 2, pp. 229–250). Enfield: Science.
  • Chabot, R., Antoun, H., & Cescas, M. P. (1993). Stimulation in the growth of corn and romaine lettuce by microorganisms dissolving inorganic phosphorus. Canadian Journal of Microbiology, 39, 941–947. doi:10.1139/m93-142
  • Chang, W. T., Chen, Y. C., & Jao, C. L. (2007). Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology, 98, 1224–1230. doi:10.1016/j.biortech.2006.05.005
  • Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41. doi:10.1016/j.apsoil.2005.12.002
  • Chet, I., Ordentlich, A., Shapira, R., & Oppenheim, A. (1990). Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and Soil, 129, 85–92. doi:10.1007/BF00011694
  • ChunJuan, W., YaHui, G., Chao, W., HongXia, L., DongDong, N., YunPeng, W., & JianHua, G. (2012). Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156. Journal of Agricultural Biotechnology, 20, 1097–1105. Retrieved from http://www.cabdirect.org/abstracts/20133087215.html
  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005
  • Costacurta, A., & Vanderleyden, J. (1995). Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, 21, 1–18. doi:10.3109/10408419509113531
  • Daniel, R. (2005). The metagenomics of soil. Nature Reviews Microbiology, 3, 470–478. doi:10.1038/nrmicro1160
  • Desai, S., Reddy, M. S., & Kloepper, J. W. (2002). Comprehensive testing of biological agents. In S. S. Gnanamanickman (Ed.), Biological control of crop diseases (pp. 387–420). New York, NY: Marcel Dekker.
  • Ding, Y., Wang, J., Liu, Y., & Chen, S. (2005). Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. Journal of Applied Microbiology, 99, 1271–1281. doi:10.1111/j.1365-2672.2005.02738.x
  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149. doi:10.1080/713610853
  • Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36, 232–244. doi:10.3109/10408411003766806
  • Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: Bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 183–258). Springer International. doi:10.1007/978-3-319-24654-3_8
  • Felse, P. A., & Panda, T. (2000). Production of microbial chitinases–A revisit. Bioprocess Engineering, 23, 127–134. doi:10.1007/PL00009117
  • Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194. doi:10.1038/nature10947
  • Frankenberger, Jr., W. T., & Arshad, M. (1995). Phytohormones in soils: Microbial production and function. New York, NY: Marcel Dekker.
  • García de Salamone, I. E., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 404–411. doi:10.1139/w01-029
  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117. doi:10.1139/m95-015
  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39. doi:10.1016/j.micres.2013.09.009
  • Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5, 54–72. Retrieved from http://hdl.handle.net/1807/6640
  • Good, X., Kellogg, J. A., Wagoner, W., Langhoff, D., Matsumura, W., & Bestwick, R. K. (1994). Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Molecular Biology, 26, 781–790. doi:10.1007/BF00028848
  • Goswami, D., Parmar, S., Vaghela, H., Dhandhukia, P., & Thakker, J. (2015). Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food & Agriculture, 1(1), 1000714. doi:10.1080/23311932.2014.1000714
  • Goswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169, 66–75. doi:10.1016/j.micres.2013.07.004
  • Goswami, D., Patel, K., Parmar, S., Vaghela, H., Muley, N., Dhandhukia, P., & Thakker, J. N. (2014). Elucidating multifaceted urease producing marine Pseudomonas aeruginosa BG as a cogent PGPR and bio-control agent. Plant Growth Regulation. doi:10.1007/s10725-014-9949-1
  • Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014b). Delineating Kocuria turfanensis 2M4 as a credible PGPR: A novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9, 566–576. doi:10.1080/17429145.2013.871650
  • Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., & Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8, 281–290. doi:10.1080/17429145.2013.768360
  • Govindasamy, V., Senthilkumar, M., & Upendra-Kumar, A. K. (2008). PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In D. K. Maheshwari & R. C. Dubey (Eds.), Potential microorganisms for sustainable agriculture (pp. 26–48). New Delhi: IK International.
  • Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., & Annapurna, K. (2011). Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 333–364). Berlin: Springer-Verlag.
  • Guemouri-Athmani, S., Berge, O., Bourrain, M., Mavingui, P., Thiéry, J. M., Bhatnagar, T., & Heulin, T. (2000). Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils. European Journal of Soil Biology, 36, 149–159. doi:10.1016/S1164-5563(00)01056-6
  • Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., R.Tadeo, F., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211. doi:10.1034/j.1399-3054.2001.1110211.x
  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319. doi:10.1038/nrmicro1129
  • Halder, A. K., & Chakrabartty, P. K. (1993). Solubilization of inorganic phosphate by rhizobium. Folia Microbiologica, 38, 325–330. doi:10.1007/BF02898602
  • Halder, A. K., Mishra, A. K., Bhattacharyya, P., & Chakrabartty, P. K. (1990). Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology, 36, 81–92. doi:10.2323/jgam.36.81
  • Hammer, P. E., Hill, D. S., Lam, S. T., Van Pée, K. H., & Ligon, J. M. (1997). Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 63, 2147–2154. Retrieved from http://aem.asm.org/content/63/6/2147
  • Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523–530. doi:10.1016/S1360-1385(00)01790-8
  • Heulin, T., Achouak, W., Berge, O., Normand, P., & Guinebretière, M.-H. (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology, 52, 607–616. doi:10.1099/ijs.0.01883-0
  • Hiltner, L. (1904). About recent experiences and problems the field of soil bacteriology with special Consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59–78.
  • Honeycutt, E. W., & Benson, D. M. (2001). Formulation of binucleate Rhizoctonia spp. and biocontrol of Rhizoctonia solani on impatiens. Plant Disease, 85, 1241–1248. doi:10.1094/PDIS.2001.85.12.1241
  • Illmer, P., & Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry, 24, 389–395. doi:10.1016/0038-0717(92)90199-8
  • Jha, C. K., & Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR): A review. E3 Journal of Agricultural Research and Development, 5, 108–119.
  • Jha, C. K., Aeron, A., Patel, B. V., Maheshwari, D. K., & Saraf, M. (2011). Enterobacter: Role in plant growth promotion. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 159–182). Berlin: Springer Berlin Heidelberg.10.1007/978-3-642-20332-9
  • Jha, C. K., Patel, B., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891–899. doi:10.1007/s11274-011-0886-0
  • Jha, C. K., Patel, D., Rajendran, N., & Saraf, M. (2010). Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. Journal of Basic Microbiology, 50, 211–217. doi:10.1002/jobm.200900272
  • Kado, C. I. (1984). Phytohormone-mediated tumorigenesis by plant pathogenic bacteria. In E. S. Dennis & B. Hohn (Eds.), Genes involved in microbe-plant interactions (pp. 311–336). Vienna: Springer.10.1007/978-3-7091-8739-5
  • Kaiss-Chapman, R. W., & Morris, R. O. (1977). Trans-zeatin in culture filtrates of Agrobacterium tumefaciens. Biochemical and Biophysical Research Communications, 76, 453–459. doi:10.1016/0006-291X(77)90746-X
  • Kamilova, F., Okon, Y., de Weert, S., & Hora, K. (2015). Commercialization of microbes: Manufacturing, inoculation, best practice for objective field testing, and registration. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 319–327). Springer International. doi:10.1007/978-3-319-08575-3_33
  • Karnwal, A., & Kaushik, P. (2011). Cytokinin production by fluorescent Pseudomonas in the presence of rice root exudates. Archives of Phytopathology And Plant Protection, 44, 1728–1735. doi:10.1080/03235408.2010.526768
  • Kaymak, H. C. (2011). Potential of PGPR in agricultural innovations. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 45–79). Springer Berlin Heidelberg. doi:10.1007/978-3-642-13612-2_3
  • Kloepper, J. W., & Schroth, M. N. (1978, August). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria (Vol. 2, pp. 879–882). Angers
  • Kobayashi, D. Y., Reedy, R. M., Bick, J., & Oudemans, P. V. (2002). Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 68, 1047–1054. doi:10.1128/AEM.68.3.1047-1054.2002
  • Koyro, H. W., Ahmad, P., & Geissler, N. (2012). Abiotic stress responses in plants: An overview. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 1–28). New York, NY: Springer. doi:10.1007/978-1-4614-0815-4_1
  • Kucey, R. M. N., Janzen, H. H., & Leggett, M. E. (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, 42, 199–228. doi:10.1016/S0065-2113(08)60525-8
  • Kudoyarova, G. R., Arkhipova, T. N., & Melent’ev, A. I. (2015). Role of bacterial phytohormones in plant growth regulation and their development. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 69–86). Springer International. doi:10.1007/978-3-319-24654-3_4
  • Ladeiro, B. (2012). Saline agriculture in the 21st century: Using salt contaminated resources to cope food requirements. Journal of Botany. doi:10.1155/2012/310705
  • Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., & Thonart, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584. doi:10.1128/AEM.71.8.4577-4584.2005
  • MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20, 387–442. doi:10.1007/s003440010038
  • Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 159–182). Springer International. doi:10.1007/978-3-319-24654-3_7
  • Malonek, S., Bömke, C., Bornberg-Bauer, E., Rojas, M. C., Hedden, P., Hopkins, P., & Tudzynski, B. (2005). Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry, 66, 1296–1311. doi:10.1016/j.phytochem.2005.04.012
  • Manulis, S., Valinski, L., Gafni, Y., & Hershenhorn, J. (1991). Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiological and Molecular Plant Pathology, 39, 161–171. doi:10.1016/0885-5765(91)90001-X
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572. doi:10.1016/j.plaphy.2004.05.009
  • Neiendam-Nielsen, M., & Sørensen, J. (1999). Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiology Ecology, 30, 217–227. doi:10.1111/j.1574-6941.1999.tb00650.x
  • Oberson, A., Frossard, E., Bühlmann, C., Mayer, J., Mäder, P., & Lüscher, A. (2013). Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant and Soil, 371, 237–255. doi:10.1007/s11104-013-1666-4
  • Ortíz-Castro, R., Valencia-Cantero, E., & López-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling & Behavior, 3, 263–265. doi:10.1094/MPMI-20-2-0207
  • Parvaiz, A., Khalid, U. R. H., Ashwani, K., Muhammad, A., & Nudrat, A. A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11, 2694–2703. doi:10.5897/AJB11.3203
  • Patel, K., Goswami, D., Dhandhukia, P., & Thakker, J. (2015). Techniques to study microbial phytohormones. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 1–27). Springer International. doi:10.1007/978-3-319-24654-3_1
  • Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220. doi:10.1139/m96-032
  • Payne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329–344. doi:10.1016/0076-6879(94)35151-1
  • Persello-Cartieaux, F., David, P., Sarrobert, C., Thibaud, M. C., Achouak, W., Robaglia, C., & Nussaume, L. (2001). Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta, 212, 190–198. doi:10.1007/s004250000384
  • Persello-Cartieaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: molecular plant-rhizobacteria interactions. Plant, Cell & Environment, 26, 189–199. doi:10.1046/j.1365-3040.2003.00956.x
  • Phillips, D. A., & Torrey, J. G. (1972). Studies on cytokinin production by rhizobium. Plant Physiology, 49, 11–15. doi:10.1104/pp.49.1.11
  • Ramos-Solano, B., Barriuso, J., & Gutiérrez-Mañero, F. J. (2008). Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In I. Ahmad, J. Pichtel, & S. Hayat (Eds.), Plant–bacteria interactions: Strategies and techniques to promote plant growth (pp. 41–54). Weinheim: Wiley VCH. doi:10.1002/9783527621989.ch3
  • Rasool, S., Ahmad, A., Siddiqi, T. O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35, 1039–1050. doi:10.1007/s11738-012-1142-4
  • Razi, S. S., & Sen, S. P. (1996). Amelioration of water stress effects on wetland rice by urea-N, plant growth regulators, and foliar spray of a diazotrophic bacterium Klebsiella sp. Biology and Fertility of Soils, 23, 454–458. doi:10.1007/BF00335922
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023. doi:10.1093/jxb/erj108
  • Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339. doi:10.1016/S0734-9750(99)00014-2
  • Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., & Antoun, H. (2001). Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 83, 101–117. Retrieved from http://www.jstor.org/stable/41998046
  • Salisbury, F. B. (1994). The role of plant hormones. In R. E. Wilkinson (Ed.), Plant–environment interactions (pp. 39–81). New York, NY: Marcel Dekker.
  • Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. Belmont, CA: Wadsworth.
  • Seldin, L., Van Elsas, J. D., & Penido, E. G. C. (1984). Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. International Journal of Systematic Bacteriology, 34, 451–456. doi:10.1099/00207713-34-4-451
  • Sethi, S. K., Sahu, J. K., & Adhikary, S. P. (2014). Microbial biofertilizers and their pilot-scale production. Microbial Biotechnology: Progress and Trends, 297. Retrieved from https://books.google.co.in/books?hl=en&lr=&id=w5DSBQAAQBAJ&oi=fnd&pg=PA297&dq=Constrain+in++biofertilizer+commercialization+&ots=UtiqPjm6uQ&sig=1PaYsw_VnEwrID4PpzEpEyrNOkA#v=onepage&q=Constrain%20in%20%20biofertilizer%20commercialization&f=false
  • Sgroy, V., Cassán, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85, 371–381. doi:10.1007/s00253-009-2116-3
  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 271. doi:10.1186/1471-2164-14-271
  • Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H., & Sa, T. (2010). Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 20, 1577–1584. doi:10.4014/jmb.1007.07011
  • Silva, H. S. A., Romeiro, R. D. S., Macagnan, D., Halfeld-Vieira, B. D. A., Pereira, M. C. B., & Mounteer, A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: Non-specific protection and increase in enzyme activities. Biological Control, 29, 288–295. doi:10.1016/S1049-9644(03)00163-4
  • Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T., & Akutsu, K. (2000). Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Disease, 84, 334–340. doi:10.1094/PDIS.2000.84.3.334
  • Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31, 425–448. doi:10.1111/j.1574-6976.2007.00072.x
  • Stacey, G., Burris, R. H., & Evans, H. J. (Eds.). (1992). Biological nitrogen fixation. Berlin: Springer Science & Business Media.
  • Tariq, M. B., John, G. H., & Powell, K. A. (1999). Microbial biopesticides: The European scene. In F. R. Hall & J. J. Menn (Eds.), Biopesticides: Use and deliver (pp. 23–24). Totowa, NJ: Human Press.
  • Thakker, J. N., Patel, N., & Kothari, I. L. (2007). Fusarium oxysporum derived elicitor-induced changes in enzymes of banana leaves against wilt disease. Journal of Mycology and Plant Pathology, 37, 510–513.
  • Thakker, J. N., Patel, P., & Dhandhukia, P. C. (2011). Induction of defence-related enzymes in susceptible variety of banana: Role of Fusarium-derived elicitors. Archives of Phytopathology and Plant Protection, 44, 1976–1984. doi:10.1080/03235408.2011.559032
  • Thakker, J. N, Patel, S., & Dhandhukia, P. C. (2012). Induction of defense-related enzymes in banana plants: Effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. ISRN Biotechnology. doi:10.5402/2013/601303
  • Upadhyaya, N. M., Letham, D. S., Parker, C. W., Hocart, C. H., & Dart, P. J. (1991). Do rhizobia produce cytokinins? Biochemistry International, 24, 123–130. Retrieved from http://europepmc.org/abstract/med/1768251
  • Van Loon, L. C., & Bakker, P. A. H. M. (2006). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 39–66). Dordrecht: Springer Netherlands.
  • van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483. doi:10.1146/annurev.phyto.36.1.453
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586. doi:10.1023/A:1026037216893
  • von der Weid, I., Duarte, G. F., van Elsas, J. D., & Seldin, L. (2002). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. International Journal of Systematic and Evolutionary Microbiology, 52, 2147–2153. doi:10.1099/ijs.0.02272-0
  • Wong, W. S., Tan, S. N., Ge, L., Chen, X., & Yong, J. W. H. (2015). The importance of phytohormones and microbes in biofertilizers. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 105–158). Springer International. doi:10.1007/978-3-319-24654-3_6
  • Zahedi, A. M., Fazeli, I., Zavareh, M., Dorry, H., & Gerayeli, N. (2012). Evaluation of the sensitive components in seedling growth of common bean (Phaseolus vulgaris L.) affected by salinity. Asian Journal of Crop Science, 4, 159–164. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=DJ201207616510.3923/ajcs.2012.159.164