9,422
Views
97
CrossRef citations to date
0
Altmetric
Review Article

Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

, , & | (Reviewing Editor)
Article: 1134380 | Received 24 Oct 2015, Accepted 03 Dec 2015, Published online: 01 Feb 2016

References

  • Abass, M., & Rajshekhar, C. B. (1993). Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes. Horticulture Science, 28, 50–52.
  • Abd-Alla, M. H., Issa, A. A., & Ohyama, T. (2014). Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In T. Ohyama (Eds.), Advances in Biology and Ecology of Nitrogen Fixation, 9, ISBN 978-953-51-1216-7.
  • Adams, S. R., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88, 869–877.10.1006/anbo.2001.1524
  • Ahmad, A., Diwan, H., & Abrol, Y. P. (2010). Global climate change, stress and plant productivity. In A. Pareek, S. K. Sopory, H. J. Bohnert, & Govindjee (Eds.), Abiotic stress adaptation in plants: Physiological, molecular and genome foundation (pp. 503–521). Dordrecht: Springer Science + Business Media BV.
  • Ahmed, F. E., Hall, A. E., & DeMason, D. A. (1992). Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79, 784–791.10.2307/2444945
  • Ahmed, J. U., & Hasan, M. A. (2011). Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh Journal of Botany, 40, 17–22.
  • AICSIP. (2012–2013). All India coordinated sorghum improvement project (Annual research report). Hyderabad.
  • Aien, A., Khetarpal, S., & Pal, M. (2011). Photosynthetic characteristics of potato cultivars grown under high temperature. American-Eurasian Journal of Agriculture & Environmental Sciences, 11, 633–639.
  • Akman, Z. (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. Journal of Animal and Veterinary Advances, 8, 358–361.
  • Al-Busaidi, A., Ahmed, M., & Chikara, J. (2012). The impact of heat and water stress conditions on the growth of the biofuel plant Jatropha curcas. International Journal of Environmental Studies, 69, 273–288.10.1080/00207233.2012.663204
  • Alia, H. H., Sakamoto, A., & Murata, N. (1998). Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. The Plant Journal, 16, 155–161.10.1046/j.1365-313x.1998.00284.x
  • Al-Khatib, K., & Paulsen, G. M. (1999). High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Science, 39, 119–125.10.2135/cropsci1999.0011183X003900010019x
  • Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., & Mohanty, P. (2008). Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research, 98, 541–550.10.1007/s11120-008-9331-0
  • Almeselmani, M., Deshmukh, P. S., & Sairam, R. K. (2009). High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57, 1–14.10.1556/AAgr.57.2009.1.1
  • Amirjani, M. (2012). Estimation of wheat responses to “high” heat stress. American Eurasian Journal of Sustainable Agriculture, 6, 222–233.
  • Amooaghaie, R., & Moghym, S. (2011). Effect of polyamines on thermotolerance and membrane stability of soybean seedling. African Journal of Biotechnology, 10, 9673–9679.
  • Angadi, S. V., Cutforth, H. W., Miller, P. R., McConkey, B. G., Entz, M. H., Brandt, S. A., & Volkmar, K. M. (2000). Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science, 80, 693–701.10.4141/P99-152
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.10.1146/annurev.arplant.55.031903.141701
  • Arora, R., Pitchay, D. S., & Bearce, B. C. (1998). Water-stress-induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiologia Plantarum, 103, 24–34.10.1034/j.1399-3054.1998.1030104.x
  • Arshad, M., & Frankernberger, W. T., Jr. (2002). Ethylene: Agricultural sources and applications (342 pp). New York, NY: Kluwer Academic, Plenum.
  • Ashraf, M., & Hafeez, M. (2004). Thermotolerance of pearl millet and maize at early growth stages: Growth and nutrient relations. Biologia Plantarum, 48, 81–86.10.1023/B:BIOP.0000024279.44013.61
  • Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223–271.10.1016/S0065-2113(05)88006-X
  • Asseng, S., Cao, W., Zhang, W., & Ludwig, F. (2009). Crop physiology, modelling and climate change: Impact and adaptation strategies. In V. O. Sadras, D. F. Calderini (Eds.), Crop physiology: Applications for genetic improvement and agronomy (pp. 511–543). Amsterdam: Elsevier Academic Press.
  • Asthir, B., Koundal, A., & Bains, N. S. (2012). Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biologia Plantarum, 56, 757–761.10.1007/s10535-012-0209-1
  • Babu, N. R., & Devraj, V. R. (2008). High temperature and salt stress response in French bean (Phaseolus vulgaris). Australian Journal of Crop Sciences, 2, 40–48.
  • Bahl, P. N., Lal, S., & Sharma, B. M. (1993). An overview of the production and problems in Southeast Asia. In W. Erskine & M. C. Saxena (Eds.), Lentil in South Asia. Proceedings of the seminar on lentils in South Asia (pp. 1–10). Aleppo, Syria: ICARDA.
  • Baker, J. T., Allen, L. H., & Boote, K. J., Jr. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany, 43, 959–964.10.1093/jxb/43.7.959
  • Barghi, S. S., Mostafaii, H., Peighami, F., & Zakaria, R. A. (2012). Path analysis of yield and its components in lentil under end season heat condition. International Journal of Agriculture Research Review, 2, 969–974.
  • Barnett, T., Altschuler, M., McDaniel, C. N., & Mascarenhas, J. P. (1980). Heat shock induced proteins in plant cells. Developmental Genetics, 1, 331–340.
  • Basra, R. K., Basra, A. S., Malik, C. P., & Grover, I. S. (2001). Are polyamines involved in the heat shock protection of mung bean seedling? Biologia Plantarum, 44, 53–57.
  • Bavita, A., Shashi, B., & Navtej, S. B. (2012). Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian Journal of Experimental Biology, 50, 372–378.
  • Beck, E. H., Fettig, S., Knake, C., Hartig, K., & Bhattarai, T. (2007). Specific and unspecific responses of plants to cold and drought stress. Journal of Biosciences, 32, 501–510.10.1007/s12038-007-0049-5
  • Bekheta, M. A., & El-Bassiouny, H. M. S. (2005). Response of two wheat cultivars grown under salinity stress to putrescine treatment. Journal of Agriculture Sciences Mansoura University, 30, 4505–4521.
  • Bibi, A. C., Oosterhuis, D. M., Goniasand, E. D., & Mattice, J. D. (2012). Nodal distribution of free polyamines in cotton ovaries. Journal of Agriculture Sciences, 150, 365–372.
  • Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat tolerance crops. Frontier in Plant Science, 4, 273–296.
  • Blum, A. (1988). Plant breeding for stress environment. Boca Raton, FL: CRC Press.
  • Blumenthal, C. S., Batey, I. L., Bekes, F., Wrigley, C. W., & Barlow, E. W. R. (1990). Gliadin genes contain heat shock elements: Possible relevance to heat induced changes in grain quality. Journal of Cereal Science, 11, 185–188.10.1016/S0733-5210(09)80162-8
  • Blumenthal, C., Bekes, F., Gras, P. W., Barlow, E. W. R., & Wrigley, C. W. (1995). Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chemistry, 72, 539–544.
  • Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology, 9, 180–188.10.1016/j.pbi.2006.01.003
  • Board, J. E., & Kahlon, C. S. (2011). Soybean yield formation: What controls it and how it can be improved? In H. A. El-Shemy (Ed.), Soybean physiology and biochemistry (pp. 1–36). Rijeka: InTech Open Access.
  • Bolhuis, G. G., & De Groot, W. (1959). Observations on the effect of varying temperatures on the flowering and fruit set in three varieties of groundnut. Netherlands Journal of Agriculture Science, 7, 317–326.
  • Bonham-Smith, P. C., Kapoor, M., & Bewley, J. D. (1988). Exogenous application of abscisic acid or triadimefon affects the recovery of Zea mays seedlings from heat shock. Physiologia Plantarum, 73, 27–30.10.1111/ppl.1988.73.issue-1
  • Boote, K. J., Jones, J. W., & Hoogenboom, G. (1998). Simulation of crop growth: CROPGRO model. In R. M. Peart & R. B. Curry (Eds.), Agricultural systems modelling and simulation (pp. 651–692). New York, NY: Marcel Dekker.
  • Boote, K. J., Allen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. M., Pan, D., & Thomas, J. M. G. (2005). Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. Journal of Agriculture Meteorology Japan, 60, 469–474.
  • Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.10.1126/science.218.4571.443
  • Brown, P. W., & Zeiher, C. A. (1998). Development of an effective screen for identifying cotton cultivars tolerant to elevated night temperatures during the monsoon (Final Report: Project 96-342AZ). Raleigh, NC: Cotton.
  • Burke, J. J., Velten, J., & Oliver, M. J. (2004). In vitro analysis of cotton pollen germination. Agronomy Journal, 96, 359–368.10.2134/agronj2004.0359
  • Burton, W. G. (1972). The response of the potato plant and tuber to temperature. In A. R. Rees, K. E. Cockshull, D. W. Hand, & R. G. Hurd (Eds.) (217–233).
  • Burton, W. G. (1981). Challenges for stress physiology in potato. American Potato Journal, 58, 3–14.10.1007/BF02855376
  • Camejo, D., Jiménez, A., Alarcón, J. J., Torres, W., Gómez, J. M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 33, 177–187.10.1071/FP05067
  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96, 5952–5959.10.1073/pnas.96.11.5952
  • Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., … Nachit, M. (2010). Plant breeding and climate changes. The Journal of Agricultural Science, 148, 627–637.10.1017/S0021859610000651
  • Cerovic, R., Ruzic, D., & Micic, N. (2000). Viability of plum ovules at different temperatures. Annals of Applied Biology, 137, 53–59.10.1111/aab.2000.137.issue-1
  • Chaitanya, K. V., Sundar, D., & Reddy, A. R. (2001). Mulberry leaf metabolism under high temperature stress. Biologia Plantarum, 44, 379–384.10.1023/A:1012446811036
  • Chakraborty, U., & Tongden, C. (2005). Evaluation of heat accilimation and salicylic acid treatments as patent inducers of thermotolerance in Cicer arietinum L. Current Sciences, 89, 382–389.
  • Chakraborty, U., & Pradhan, D. (2011). High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. Journal of Plant Interactions, 6, 43–52.10.1080/17429145.2010.513484
  • Che, P., Bussell, J. D., Zhou, W., Estavillo, G. M., Pogson, B. J., & Smith, S. M. (2010). Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Science Signaling, 3, 69.
  • Chen, T. H. H., Shen, Z. Y., & Li, P. H. (1982). Adaptability of crop plants to high temperature stress. Crop Science, 22, 719–725.10.2135/cropsci1982.0011183X002200040006x
  • Chen, T. H. H., & Murata, N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250–257.10.1016/S1369-5266(02)00255-8
  • Chen, W. R., Zheng, J. S., Li, Y. Q., & Guo, W. D. (2012). Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultra structure, and antioxidant activities in fingered citron. Journal of Plant Physiology, 59, 732–740.
  • Cheng, L., Zou, Y., Ding, S., Zhang, J., Yu, X., Cao, J. S., & Lu, G. (2009). Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. Journal of Integrative Plant Biology, 51, 489–499.10.1111/jipb.2009.51.issue-5
  • Cheng, L., Sun, R. R., Wang, F. Y., Peng, Z., Kong, F. L., Wu, J., Cao, J. S., & Lu, G. (2012). Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. Journal of Biomedicine and Biotechnology, 13, 283–297.
  • Chhabra, M. L., Dhawan, A., Sangwan, N., Dhawan, K., & Singh, D. (2009). Phytohormones induced amelioration of high temperature stress in Brassica juncea (L.) In Proceedings of 16th Australian Research Assembly on Brassicas (pp. 10–14). Ballarat, Australia.
  • Chowdhury, S. I., & Wardlaw, I. F. (1978). The effect of temperature on kernel development in cereals. Australian Journal of Agricultural Research, 29, 205–223.10.1071/AR9780205
  • Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7–30.10.1007/s10584-006-9210-7
  • Chu, T. M., Aspinall, D., & Paleg, L. G. (1974). Stress metabolism. VI.* Temperature stress and the accumulation of proline in barley and radish. Australian Journal of Plant Physiology, 1, 87–97.10.1071/PP9740087
  • Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304.10.1146/annurev.biochem.77.062706.153223
  • Clarke, H. J., & Siddique, K. H. M. (2004). Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Research, 90, 323–334.10.1016/j.fcr.2004.04.001
  • Cottee, N., Tan, D., Bange, M., Cothren, J., & Campbell, L. (2010). Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Science, 50, 2553–2564.10.2135/cropsci2010.03.0182
  • Crafts-Brandner, S. J., & Salvucci, M. E. (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97, 13430–13435.10.1073/pnas.230451497
  • Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129, 1773–1780.10.1104/pp.002170
  • Cvikrova, M., Gemperlova, L., Dobra, J., Martincova, O., Prasil, I. T., Gubis, J., & Vankova, R. (2012). Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Science, 182, 49–58.10.1016/j.plantsci.2011.01.016
  • Cyril, J., Powell, G. L., Duncan, R. R., & Waird, W. V. (2002). Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Science, 42, 2031–2037.10.2135/cropsci2002.2031
  • Daie, J., & Campbell, W. F. (1981). Response of tomato plants to stressful temperatures: Increase in abscisic acid concentrations. Plant Physiology, 67, 26–29.10.1104/pp.67.1.26
  • Dash, S., & Mohanty, N. (2002). Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. Journal of Plant Physiology, 159, 49–59.10.1078/0176-1617-00594
  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.10.1104/pp.116.4.1351
  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.10.1016/S0176-1617(00)80228-X
  • De Ronde, J. A., Cress, W. A., Kruger, G. H. J., Strasser, R. J., & Van Staden, J. (2004). Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology, 161, 1211–1224.
  • Deng, Y., Humbert, S., Liu, J. X., Srivastava, R., Rothstein, S. J., & Howell, S. H. (2011). Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proceedings of the National Academy of Sciences, 108, 7247–7252.
  • Deng, Y., Srivastava, R., & Howell, S. H. (2013). Endoplasmic reticulum (ER) stress response and its physiological roles in plants. International Journal of Molecular Sciences, 14, 8188–8212.10.3390/ijms14048188
  • Devasirvatham, V., Tan, D. K. Y., Trethowan, R. M., Gaur, P. M., & Mallikarjuna, N. (2010, November). Impact of high temperature on the reproductive stage of chickpea. In H. Dove & R. A. Culvenor (Eds.), Food Security from Sustainable Agriculture Proceedings of the 15th Australian Society of Agronomy Conference (pp. 15–18). Lincoln, New Zealand.
  • Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. (2012). High temperature tolerance in chickpea and its implications for plant improvement. Crop and Pasture Science, 63, 419–428.10.1071/CP11218
  • Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., & Tan, D. K. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9–19.10.1016/j.fcr.2012.11.011
  • Dias, A. S., & Lidon, F. C. (2009). Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. Journal of Agronomy and Crop Science, 195, 137–147.10.1111/jac.2009.195.issue-2
  • Dias, C. V., Mendes, J. S., dos Santos, A. C., Pirovani, C. P., da Silva Gesteira, A., Micheli, F., … de Mattos Cascardo, J. C. (2011). Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiology and Biochemistry, 49, 917–922.10.1016/j.plaphy.2011.05.004
  • Dhaubhadel, S., Chaudhary, S., Dobinson, K. F., & Krishna, P. (1999). Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology, 40, 333–342.10.1023/A:1006283015582
  • Dickson, M. H., & Boetteger, M. A. (1984). Effect of high and low temperatures on pollen germination and seed set in snap beans. Journal of the American Society for Horticulture Science, 114, 833–836.
  • Ding, W., Song, L., Wang, X., & Bi, Y. (2010). Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biologia Plantarum, 54, 607–613.10.1007/s10535-010-0110-3
  • Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999–1007.10.1016/j.plaphy.2010.09.009
  • Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. (2013). Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199, 171–177.10.1111/jac.2013.199.issue-3
  • Dubey, R. S. (2005). Photosynthesis in plants under stressful conditions. In M. Pessarakli (Ed.), Handbook of photosynthesis (2nd ed., pp. 717–737). Boca Roton, FL: CRC Press.
  • Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94, 665–670.10.1104/pp.94.2.665
  • Ebrahim, M. K., Zingsheim, O., El-Shourbagy, M. N., Moore, H., & Komor, E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology, 153, 593–602.10.1016/S0176-1617(98)80209-5
  • Egorova, V. P., Yin-Shan, L. O., & Hwa, D. A. I. (2011). Programmed cell death induced by heat shock in mungbean seedlings. Botanical Studies, 52, 73–78.
  • El-Bassiouny, H. M. S. (2004). Increasing thermotolerance of Pisum sativum L. plants through application of putrescine and stigmasterol. Egyptian Journal of Biotechnology, 18, 93–118.
  • Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., … Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiology, 50, 1911–1922.10.1093/pcp/pcp135
  • Erkina, T. Y., Zou, Y., Freeling, S., Vorobyev, V. I., & Erkine, A. M. (2010). Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Research, 38, 1441–1449.10.1093/nar/gkp1130
  • Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10, 565–572.
  • FAO (2001). Production year book. Rome: Food and Agricultural Organisation.
  • FAO. (2008). Retrieved from http://www.potato2008.org/en/potato/cultivation.html
  • Farrell, T. C., Fox, K. M., Williams, R. L., & Fukai, S. (2006). Genotypic variation for cold tolerance during reproductive development in rice: Screening with cold air and cold water. Field Crops Research, 98, 178–194.10.1016/j.fcr.2006.01.003
  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain filling phases. Critical Review in Plant Science, 30, 1–17.
  • Ferguson, M. E., & Robertson, L. D. (1999). Morphological and phenological variation in the wild relatives of lentil. Genetic Resources and Crop Evolution, 46, 3–12.10.1023/A:1008645029658
  • Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect of high temperature stress at anthesis on grain yield and biomass of field grown crops of wheat. Plant Cell and Environment, 34, 67–78.
  • Firon, N., Peet, M. M., Pharr, D. M., Zamski, E., Rosenfeld, K., Althan, L., & Pressma, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae, 109, 212–217.10.1016/j.scienta.2006.03.007
  • Fletcher, H. F., Ormrod, D. P., Maurer, A. R., & Stanfield, B. (1966). Response of peas to environment: I. Planting date and location. Canadian Journal of Plant Science, 46, 77–85.10.4141/cjps66-010
  • Foolad, M. R. (2005). Breeding for abiotic stress tolerances in tomato. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches (pp. 613–684). New York, NY: The Haworth Press.
  • Folsom, J. J., Begcy, K., Hao, X., Wang, D., & Walia, H. (2014). Rice FIE1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiology, 17, 480–485. doi:10.1104/pp.113.232413.
  • Gan, Y., Wang, J., Angadi, S.V., & Mcdonald, C. L. (2004). Response of chickpea to short periods of high temperature and water stress at different developmental stages. 4th International Crop Science Congress, Brisbane.
  • Gao, J., Wang, N., Xu, S. S., Li, Y., Wang, Y., & Wang, G. S. (2013). Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. Biologia Plantarum, 57, 380–384.10.1007/s10535-012-0285-x
  • Garcia-Mata, C., & Lamattina, L. (2002). Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiology, 128, 790–792.10.1104/pp.011020
  • Gibson, L. R., & Mullen, R. E. (1996). Soybean seed quality reductions by high day and night temperature. Crop Science, 36, 1615–1619.10.2135/cropsci1996.0011183X003600060034x
  • Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39, 1841–1846.10.2135/cropsci1999.3961841x
  • Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013). Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2, 489–506.10.3390/plants2030489
  • Gong, M., Li, Y. J., & Chen, S. Z. (1998). Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 153, 488–496.10.1016/S0176-1617(98)80179-X
  • Gowda, C. L. L., Upadhaya, H. D., Sharma, S., Varshney, R. K., & Dwivedi, S. L. (2013). Exploring genomic resources for efficient conservation and use of chickpea, groundnut and pigeonpea collection for crop improvement. Plant Genome, 6, 3. doi:10.3835/plantgeno2013.
  • Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochemical Journal, 388, 151–157.10.1042/BJ20041931
  • Greer, D. H., & Weedon, M. M. (2012). Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell & Environment, 35, 1050–1064.
  • Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212.10.1016/0378-4290(94)90112-0
  • Guedira, M., McCluskey, P. J., MacRitchie, F., & Paulsen, G. M. (2002). Composition and quality of wheat grown under different shoot and root temperatures during maturation. Cereal Chemistry, 79, 397–403.10.1094/CCHEM.2002.79.3.397
  • Guilioni, L., Wery, J., & Tardieu, F. (1997). Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Annals of Botany, 80, 159–168.10.1006/anbo.1997.0425
  • Guo, F., Okamoto, M., & Crawford, N. M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 302, 100–103.10.1126/science.1086770
  • Guo, F. L., Yu, J., Tao, J., Su, J., & Zhang, C. H. (2009). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of Euphorbia pulcherrima. Journal of Yangzhou University Agricultural and Life Science Edition, 30, 71–74.
  • Haldimann, P., & Feller, U. (2005). Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell & Environment, 28, 302–317.
  • Hall, A. E. (1992). Breeding for heat tolerance. In J. Janick (Ed.), Plant breeding reviewers (pp. 129–168). New York, NY: Wiley.
  • Hall, A. E. (2004). Breeding for adaptation to drought and heat in cowpea. European Journal of Agronomy, 21, 447–454.10.1016/j.eja.2004.07.005
  • Hamada, A. M. (2001). Alteration in growth and some relevant metabolic processes of broad bean plants during extreme temperatures exposure. Acta Physiologiae Plantarum, 23, 193–200.10.1007/s11738-001-0008-y
  • Hare, P. D., Cress, W. A., & Staden, J. V. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell & Environment, 21, 535–553.
  • Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.
  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2010). Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Sciences, 5, 354–375.
  • Hasanuzzaman, M., Hossain, M. A., da Silva, J. A., & Fujita, M. (2012). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defences is a key factors. In B. Venkateswarlu, A. K. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 261–315). Berlin: Springer.10.1007/978-94-007-2220-0
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.10.3390/ijms14059643
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In K. Vahadati & C. Leslie (Eds.), Abiotic stress—Plant response and applications in agriculture. INTECH (open science journal), doi:10.5772/54833
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013c). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). New York, NY: Springer.10.1007/978-1-4614-4747-4
  • Hassanein, R. A., El-Khawas, S. A., Ibrahim, S. K., El-Bassiouny, H. M., Mostafa, H. A., & Abdel-Monem, A. A. (2013). Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pakistan Journal of Botany, 45, 111–118.
  • Hatfield, J. L., Boote, K. J., Fay, P., Hahn, L., Izaurralde, C., Kimball, B. A., … Wolfe, D. (2008). The effects of climate change on agriculture, land resources, water resources, and biodiversity (pp. 21–74). Washington, DC: Climate Change Science Program and the Subcommittee on Global Change Research.
  • Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A., & Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103, 351–370.10.2134/agronj2010.0303
  • Havaux, M. (2006). Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell & Environment, 16, 461–467.
  • Hayat, S., Masood, A., Yusuf, M., Fariduddin, Q., & Ahmad, A. (2009). Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Brazilian Journal of Plant Physiology, 21, 187–195.
  • He, Y., Liu, Y., Cao, W., Hua, W., Xu, B., & Huang, B. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.10.2135/cropsci2003.0678
  • Heckathorn, S. A., Ryan, S. L., Baylis, J. A., Wang, D., Hamilton, E. W., Cundiff, I. L., & Luth, D. S. (2002). In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Functional Plant Biology, 29, 933–944.
  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2003). The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell & Environment, 26, 1673–1680.
  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2005). The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biology, 7, 476–483.10.1055/s-2005-865850
  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2007). Warm temperatures at bloom reduce fruit set in sweet cherry. Journal of Applied Botany Food Quality, 81, 158–164.
  • Hernandez, L. D., & Vierling, E. (1993). Expression of low molecular weight heat shock proteins under field conditions. Plant Physiology, 101, 1209–1216.
  • Herrero, M. P., & Johnson, R. R. (1980). High-temperature stress and pollen viability of maize. Crop Science, 20, 796–800.10.2135/cropsci1980.0011183X002000060030x
  • Hewitt, F. R., Hough, T., Neill, O. P., Sasse, J. M., Williams, E. G., & Rowan, K. S. (1985). Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of prunus avium using a multiple hanging-drop assay. Australian Journal of Plant Physiology, 12, 201–211.10.1071/PP9850201
  • Hiron, R. W. P., & Wright, S. T. C. (1973). The role of endogenous abscisic acid in the response of plants to stress. Journal of Experimental Botany, 24, 769–780.10.1093/jxb/24.4.769
  • Hola, A. (2011). Brassinosteroids and photosynthesis. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 143–192). New York, NY: Springer.
  • Hong, S. W., & Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceedings of National Academy of Sciences, 97, 4392–4397.
  • Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M. L., Munnik, T., & Saidi, Y. (2012). Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 51, 208–220.10.1016/j.plipres.2012.02.002
  • Hossain, M. M., Takeda, H., & Senboku, T. (1995). Proline content in Brassica under high temperature stress. Japan International Research Centre for Agricultural Sciences Journal, 2, 87–93.
  • Howarth, C. J., & Ougham, H. J. (1993). Gene expression under temperature stress. New Phytologist, 125, 1–26.10.1111/nph.1993.125.issue-1
  • Howarth, C. J., Pollock, C. J., & Peacock, J. M. (1997). Development of laboratory based methods for assessing seedling thermotolerance in pearl millet. New Phytologist, 137, 129–139.10.1046/j.1469-8137.1997.00827.x
  • Howarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches (pp. 277–300). New York, NY: Howarth Press.
  • Hua, J. (2009). From freezing to scorching, transcriptional responses to temperature variations. Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic stresses plant resistance through breeding and molecular approaches (pp. 568–573). New York, NY: Howarth Press.
  • Huang, B., & Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology, 50, 1230–1237.10.1111/jipb.2008.50.issue-10
  • Hurkman, W. J., Vensel, W. H., Tanaka, C. K., Whitehand, L., & Altenbach, S. B. (2009). Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science, 49, 12–23.10.1016/j.jcs.2008.06.014
  • Huve, K., Bichele, I., Tobias, M., & Niinemets, U. (2005). Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant Cell & Environment, 29, 212–218.
  • Iba, K. (2002). Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology, 53, 225–245.10.1146/annurev.arplant.53.100201.160729
  • Ibrahim, H. M. (2011). Heat stress in food legumes: Evaluation of membrane thermostability methodology and use of infra-red thermometry. Euphytica, 180, 99–105.10.1007/s10681-011-0443-9
  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), A special report of working groups I and II of the intergovernmental panel on climate change (p. 582). Cambridge: Cambridge University Press.
  • Islam, M. T. (2011). Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. International Journal of Sustainable Crop Production, 6, 14–16.
  • Ismail, A. M., & Hall, A. E. (1999). Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 39, 1762–1768.10.2135/cropsci1999.3961762x
  • Ivanov, A. G., Kitcheva, M. I., Christov, A. M., & Popova, L. P. (1992). Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts. Plant Physiology, 98, 1228–1232.10.1104/pp.98.4.1228
  • Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 227, 67–79.10.1007/s00425-007-0595-y
  • Jiang, Y., & Haung, B. (2001). Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 52, 341–349.10.1093/jexbot/52.355.341
  • Jie, Z., Xiaodong, J., Tianlai, Li, & Zaigiang, Y. (2012). Effect of moderately high temperature stress on photosynthesis and carbohydrate metabolism in tomato (Lycopersicon esculentum L.) leaves. African Journal of Agricultural Research, 7, 487–492.
  • Johkan, M., Oda, M., Maruo, T., & Shinohara, Y. (2011). Crop production and global warming. In S. Casalegno (Ed.), Global warming impacts-case studies on the economy, human health, and on urban and natural environments (pp. 139–152). Rijeka: In Tech.
  • Kakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V. V., Reddy, V. R., & Zhao, D. (2005). Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 96, 59–67.10.1093/aob/mci149
  • Kakkar, R. K., & Sawhney, V. K. (2002). Polyamine research in plants a changing perspective. Plant Physiology, 116, 273–429.
  • Karim, M. A., Fracheboud, Y., & Stamp, P. (1997). Heat tolerance of maize with reference of some physiological characteristics. Annals of Bangladesh Agriculture, 7, 27–33.
  • Karl, T. R., Kukla, G., Razuvayev, V. N., Changery, M. J., Quayle, R. G., Heim, R. R. J., Easterling, D. R., & Fu, C. B. (1991). Global warming: Evidence for asymmetric diurnal temperature change. Geophysical Research Letters, 18, 2253–2256.10.1029/91GL02900
  • Katiyar-Agarwal, S., Agarwal, M., & Grover, A. (2003). Heat tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology, 51, 677–686.10.1023/A:1022561926676
  • Kaur, J., Sheoran, I. S., & Nainawatee, H. S. (1988). Effect of heat stress on photosynthesis and respiration in wheat mutant. In photosynthesis: Molecular biology and bioenergetics. In Proceedings of Indo US Workshop. New Delhi: Narosa Publications.
  • Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African Journal of Biotechnology, 8, 619–625.
  • Kaushal, N., Gupta, K., Bhandari, K., Kumar, S., & Thakur, P. (2011). Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology & Molecular Biology of Plants, 17, 203–213.
  • Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40, 1334–1349.10.1071/FP13082
  • Kee, S. C., & Nobel, P. S. (1986). Concomitant changes in high temperature tolerance and heat-shock proteins in desert succulents. Plant Physiology, 80, 596–598.10.1104/pp.80.2.596
  • Khalil, S. I., El-Bassiouny, H. M. S., Hassanein, R. A., Mostafa, H. A., El-Khawas, S. A., & Abd El-Monem, A. A. (2009). Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Australian Journal of Basic & Applied Sciences, 3, 1517–1526.
  • Khodarahmpour, Z. (2011). Genetic analysis of tolerance to heat stress in maize (Zea mays L.). African Journal of Agricultural Research, 6, 2767–2773.
  • Kigel, J., Konsens, I., & Ofir, M. (1991). Branching, flowering and pod-set patterns in snap-bean (Phaseolus vulgaris L.) as affected by temperature. Canadian Journal of Plant Science, 71, 1233–1242.10.4141/cjps91-171
  • Kim, H. Y., Horie, T., Nakagawa, H., & Wada, K. (1996). Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect of yield and its component of Akihikari rice. Japanese Journal of Crop Science, 65, 644–651.10.1626/jcs.65.644
  • Kim, K., & Portis, A. R. (2005). Temperature dependence of photosynthesis in arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiology, 46, 522–530.10.1093/pcp/pci052
  • Kobza, J., & Edwards, G. E. (1987). Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiology, 83, 69–74.10.1104/pp.83.1.69
  • Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., & Franklin, K. A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current Biology, 19, 408–413.10.1016/j.cub.2009.01.046
  • Kolupaev, Y. Y., Yastreb, T. O., Karpets, Yu V, & Miroshnichenko, N. N. (2011). Influence of salicylic and succinic acid on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L. Journal of Stress Physiology & Biochemistry, 7, 154–163.
  • Konsens, I., Ofir, M., & Kigel, J. (1991). The effect of temperature on the production and flowers and pods in snap bean (Phaseolus vulgaris L.). Annals of Botany, 67, 391–399.
  • Koti, S., Reddy, K. R., Kakani, V. G., Zhao, D., & Reddy, V. R. (2004). Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation. Annals of botany, 94, 855–864.
  • Koti, S., Reddy, K. R., Kakani, V. G., Zhao, D., & Reddy, V. R. (2005). Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany, 56, 725–736.10.1093/jxb/eri044
  • Kou, C. G., Chen, H. M., & Ma, L. H. (1986). Effect of high temperature on proline content in uds and leaves. Journal of American Society for Horticultural Science, 11, 734–750.
  • Kozai, N., Beppu, K., Mochioka, R., Boonprakob, U., Subhadrabandhu, S., & Kataoka, I. (2004). Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’ peach trees. The Journal of Horticultural Science & Biotechnology, 79, 533–537.
  • Kromer, S. (1995). Respiration during photosynthesis. Annual Review of Plant Physiology & Plant Molecular Biology, 46, 45–70.
  • Krishnamurthy, L., Gaur, P. M., Basu, P. S., Chaturvedi, S. K., Tripathi, S., Vadez, V., … Gowda, C. L. L. (2011). Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources, 9, 59–69.10.1017/S1479262110000407
  • Kumar, S., Kaur, R., Kaur, N., Bhandhari, K., Kaushal, N., Gupta, K., Bains, T. S., & Nayyar, H. (2011). Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiologiae Plantarum, 33, 2091–2101.10.1007/s11738-011-0748-2
  • Kumar, S., Gupta, D., & Nayyar, H. (2012). Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34, 75–86.10.1007/s11738-011-0806-9
  • Kumar, S., Kaushal, N., Nayyar, H., & Gaur, P. (2012). Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiologiae Plantarum, 34, 1651–1658.10.1007/s11738-012-0959-1
  • Kumar, S., Sirhindi, G., Bhardwaj, R., Kumar, M., & Arora, P. (2012). Role of 24-epibrassinolide in amelioration of high temperature stress through antioxidant defense system in Brassica juncea L. Plant Stress, 6, 55–58.
  • Kumar, S., Thakur, P., Kaushal, N., Malik, J. A., Gaur, P., & Nayyar, H. (2013). Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archieves of Agronomy & Soil Science, 59, 823–843.
  • Kumar, S. V., & Wigge, P. A. (2010). H2A.Z-Containing nucleosomes mediate the thermosensory response in arabidopsis. Cell, 140, 136–147.10.1016/j.cell.2009.11.006
  • Kurdali, F. (1996). Nitrogen and phosphorus assimilation, mobilization and partitioning in rainfed chickpea (Cicer arietinum L.). Field Crops Research, 47, 81–92.10.1016/0378-4290(96)00034-2
  • Kusewa, P. K. (1978). The influence of temperature on germination and early seedling growth of maize (Zea mays) and sorghum (Sorghum bicolor) (Master’s agricultural studies thesis). University of Queensland, Brisbane.
  • Laghri, K. A., Mahboob, A. S., & Arain, M. A. (2012). Effect of high temperature stress on grain yield and yield components of wheat (Triticum aetivum L.). Science Technology & Development, 31, 83–90.
  • Laing, D. R., Jones, P. G., & Davis, J. H. (1984). Common bean (Phaseolus vulgaris L.). In P. R. Goldsworthy & N. M. Fisher (Eds.), The physiology of tropical field crops (pp. 305–351). New York, NY: Wiley.
  • Lamattina, L., Beligni, M. V., Garcia-Mata, C., & Laxalt, A. M. (2001). Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent. US 6242384 B1.
  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.10.1104/pp.010320
  • Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161, 405–413.10.1078/0176-1617-01239
  • Lather, B. P. S., Saini, M. L., & Punia, M. S. (2001). Hybrid cotton retrospect and prospects in Indian context. National Journal of Plant Improvement, 3, 61–68.
  • Lee, J. H., Hübel, A., & Schöffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermal tolerance in transgenic Arabidopsis. Plant Journal, 8, 603–612.
  • Lee, J. H., & Schöffl, F. (1996). An HSP70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular Genetics & Genomics, 252, 11–19.
  • Lehman, V. G., & Engelke, M. C. (1993). Heritability of creeping bentgrass shoot water content under soil dehydration and elevated temperatures. Crop Science, 33, 1061–1066.10.2135/cropsci1993.0011183X003300050037x
  • Levitt, J. (1980). Freezing resistance—Types, measurement and changes. In Responses of plants to environmental stress, chilling, freezing, and high temperature stress (Vol. 1, pp. 137–141). New York, NY: Academic Press.
  • Li, S. J., Fu, Q. T., Huang, W. D., & Yu, D. Q. (2009). Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports, 28, 683–693.10.1007/s00299-008-0666-y
  • Li, S., Li, F., Wang, J., Zhang, W., Meng, Q., Chen, T. H. H., Murata, N., & Yang, X. (2011). Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell & Environment, 34, 1931–1943.
  • Li, X., Zhang, D., Li, H., Wang, Y., Zhang, Y., & Wood, A. J. (2014). EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. Plant Biology, 14, 44.
  • Lin, C. Y., Roberts, J. K., & Key, J. L. (1984). Acquisition of thermotolerance in soybean seedlings: Synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiology, 74, 152–160.10.1104/pp.74.1.152
  • Liu, X., & Huang, B. (2000). Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. Journal of the American Society for Horticultural Science, 125, 442–447.
  • Liu, J. X., Liao, D. Q., Oane, R., Estenor, L., Yang, X. E., Li, Z. C., & Bennett, J. (2006). Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Research, 97, 87–100.10.1016/j.fcr.2005.08.019
  • Lobell, D. B., & Asner, G. P. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science, 299, 1032.10.1126/science.1077838
  • Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relation-ships and the impact of recent warming. Environmental Research Letters, 2, 1–7.
  • Lobell, D. B., Schlenker, W., & Roberts, J. C. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.10.1126/science.1204531
  • Lopez-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. A. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.10.1093/jxb/49.321.713
  • Lu, G., Gao, C., Zheng, X., & Han, B. (2009). Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229, 605–615.10.1007/s00425-008-0857-3
  • Luo, Q. (2011). Temperature thresholds and crop production: A review. Climatic Change, 109, 583–598.10.1007/s10584-011-0028-6
  • Luo, Y., Li, F., Wang, G. P., Yang, X. H., & Wang, W. (2010). Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biologia Plantarum, 54, 495–501.10.1007/s10535-010-0087-y
  • Maçãs, B., Gomes, M. C., Dias, A. S., & Coutinho, J. (2000). The tolerance of durum wheat to high temperatures during grain filling. In C. Royo, M. M. Nachit, N. Di Fonzo, & J. L. Araus (Eds.), Options Méditerranéennes. Durum wheat improvement in the Mediterranean region: New challenges (pp. 257–261). Zaragoza, Spain: CIHEAM.
  • Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil, 233, 179–187.10.1023/A:1010346601643
  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667–681.10.1023/A:1014826730024
  • Mahoney, J. (1991). Field pea. In R. S. Jessop & R. L. Wright (Eds.), New crops: Agronomy and potential of alternative crop species (pp. 53–62). Melbourne: Inkata Press.
  • Maiti, R. K. (1996). Sorghum science. Lebanon, NH: Science.
  • Malik, M. K., Slovin, J. P., Hwang, C. H., & Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. The Plant Journal, 20, 89–99.10.1046/j.1365-313X.1999.00581.x
  • Mansoor, S., & Naqvi, F. N. (2011). Heat stress and acquisition of thermotolerance in mung bean (Vigna radiata L.). International Journal of Biology and Biotechnology, 8, 77–84.
  • Martineau, J. R., Specht, J. E., Williams, J. H., & Sullivan, C. Y. (1979). Temperature tolerance in soybean. Evaluation of temperature for assessing cellular membrane thermostability. Crop Science, 19, 75–78.10.2135/cropsci1979.0011183X001900010017x
  • Mathur, S., Jajoo, A., Mehta, P., & Bharti, S. (2011). Analysis of elevated temperature induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13, 1–6.10.1111/plb.2010.13.issue-1
  • Mathur, S., & Jajoo, A. (2014). Effects of heat stress on growth and crop yield of wheat (Triticum aestivum). In A. Ahmad & M. R. Wani (Eds.), Physiological mechanisms and adaptation strategies in plants under changing environment (Vol. 1, pp. 163–191). New York, NY: Springer.
  • Matsui, T., Omasa, K., & Horie, T. (1999). Rapid swelling of pollen grains in response to floret opening unfolds anther locules in rice (Oryza sativa L.). Plant Production Science, 2, 196–199.10.1626/pps.2.196
  • Matsushima, S., Ikewada, H., Maeda, A., Honma, S., & Niki, N. (1982). Studies on rice cultivation in the tropics 1: Yielding and ripening responses of the rice plant to the extremely hot and dry climate in Sudan. Japan Journal of Tropical Agriculture, 26, 19–25.
  • Mayer, R. R., Cherry, J. H., & Rhodes, D. (1990). Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiology, 94, 796–810.10.1104/pp.94.2.796
  • Mazorra, L. M., Nunez, M., Echerarria, E., Coll, F., & Sánchez-Blanco, M. J. (2002). Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45, 593–596.10.1023/A:1022390917656
  • McCue, K. F., & Hanson, A. D. (1990). Drought and salt tolerance: Towards understanding and application. Trends in Biotechnology, 8, 358–362.10.1016/0167-7799(90)90225-M
  • McDonald, G. K., & Paulsen, G. M. (1997). High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil, 196, 47–58.10.1023/A:1004249200050
  • Medina, C., & Cardemil, L. (1993). Prosopis chilensis is a plant highly tolerant to heat shock. Plant Cell & Environment, 16, 305–310.
  • Mishina, T. E., Lamb, C., & Zeier, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell & Environment, 30, 39–52.
  • Minchin, F. R., Summerfield, R. J., Hadley, P., & Roberts, E. H. (1980). Growth, longevity and nodulation of roots in relation to seed yield in chickpeas (Cicer arietinum). Experimental Agriculture, 16, 241–261.10.1017/S0014479700010991
  • Mingpeng, H., Yongge, G., Chengzhang, W., Fangrui, S., Yanhua, W., & Xiaoxia, Z. (2010). Related studies on the effects of high temperature stress on alfalfa and its heat resistance mechanism. Genomics and Applied Biology, 29, 563–569.
  • Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37, 118–125.10.1016/j.tibs.2011.11.007
  • Mishkind, M., Vermeer, J. E., Darwish, E., & Munnik, T. (2009). Heat stress activates phospholipase D and triggers PIP 2 accumulation at the plasma membrane and nucleus. The Plant Journal, 60, 10–21.10.1111/tpj.2009.60.issue-1
  • Mohammad, W., Shehzadi, S., Shah, M., & Shah, Z. (2010). Effect of tillage and crop residues management on mungbean (Vigna radiata (L.) Wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas. Pakistan Journal Botany, 42, 1781–1789.
  • Mohammed, A. R., & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33, 117–123.10.1016/j.eja.2009.11.006
  • Momcilovic, I., & Ristic, Z. (2007). Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology, 164, 90–99.10.1016/j.jplph.2006.01.010
  • Monterroso, V. A., & Wien, H. C. (1990). Flower and pod abscission due to heat stress in beans. Journal of American Society for Horticultural Sciences, 115, 631–634.
  • Morales, D., Rodriguez, P., Dell’amico, J., Nicolas, E., Torrecillas, A., & Sanchez-Blanco, M. J. (2003). High temperature pre-conditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Plant Biology, 47, 203–208.
  • Moriarty, T., West, R., Small, G., Rao, D., & Ristic, Z. (2002). Heterologous expression of maize chloroplast protein synthesis elongation factor (EF-Tu) enhances Escherichia coli viability under heat stress. Plant Science, 163, 1075–1082.10.1016/S0168-9452(02)00273-X
  • Morris, M. L., Risopoulos, J., & Beck, D. (1999). Genetic changes in farmer recycled maize seed: A review of the evidence. CIMMYT economics (Working Paper No. 99-07), Mexico, D.F.: CIMMYT.
  • Morrison, M. J. (1993). Heat stress during reproduction in summer rape. Canadian Journal of Botany, 71, 303–308.10.1139/b93-031
  • Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer Brassica. Crop Science, 42, 797–803.10.2135/cropsci2002.0797
  • Murkowski, A. (2001). Heat stress and spermidine: Effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum, 44, 53–57.10.1023/A:1017966203859
  • Naidu, B. P., & Williams, R. (2004). Seed treatment and foliar application of osmoprotectants to increase crop establishment and cold tolerance at flowering in rice ( A Report of the Rural Industries Research and Development Corporation Project No. CST-2A). Brisbane: CSIRO Tropical Agriculture.
  • Nakano, H., Kobayashi, M., & Terauchi, T. (1998). Sensitive stages to heat stress in pod setting of common bean (Phaseolus vulgaris L.). Japanese Journal of Tropical Agriculture, 42, 78–84.
  • Nayyar, H., Bains, T., & Kumar, S. (2005). Low temperature induced floral abortion in chickpea: Relationship to abscisic acid and cryoprotectants in reproductive organs. Environmental and Experimental Botany, 53, 39–47.10.1016/j.envexpbot.2004.02.011
  • Neill, S. J., Desikan, R., Clarke, A., & Hancock, J. T. (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology, 128, 13–16.10.1104/pp.010707
  • Nemeskeri, E. (2004). Heat tolerance in grain legumes. Die Bodenkultur, 55, 3–11.
  • Nicolas, M. E., Gleadow, R. M., & Dalling, M. J. (1984). Effects of drought and high temperature on grain growth in wheat. Australian Journal of Plant Physiology, 11, 553–566.10.1071/PP9840553
  • Nonnecke, I. L., Adedipe, N. O., & Omrod, D. P. (1971). Temperature and humidity effects on the growth and yield of pea cultivars. Canadian Journal of Plant Science, 51, 479–484.10.4141/cjps71-094
  • Noohi, K., Fatahi, E., & Kamali, G. H. A. (2009). Heat stress effects analysis on wheat crop in southern provinces. Geophysical Research Abstracts, 11, 4441.
  • Nuttall, W. F., Moulin, A. P., & Townley Smith, L. J. (1992). Yield response of canola to nitrogen, phosphorus, precipitation, and temperature. Agronomy Journal, 84, 765–768.10.2134/agronj1992.00021962008400050001x
  • Nyugen, H. T. (1999). Sorghum gene mapping develops stay green. Science Daily. Retrieved July 2, 2009, from http://www.Sciencedaily.Com/releases/1999/07/990726101241.htm
  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.10.1007/s00344-007-9030-7
  • Oosterhius, D. M. (1999). Yield response to environmental extremes in cotton. In Dugger, C. P. & Richter, D. A. (Eds.), In proceeding of the 1999 cotton research meeting National Cotton Council of America (pp. 30–38). Memphis, TN.
  • Ormrod, D. P., Woolley, C. J., Eaton, G. W., & Stobbe, E. H. (1967). Effect of temperature on embryo sac development in Phaseolus vulgaris L. Canadian Journal of Botany, 45, 948–950.10.1139/b67-097
  • Ortiz, C., & Cardemil, L. (2001). Heat-shock responses in two leguminous plants: A comparative study. Journal of Experimental Botany, 52, 1711–1719.10.1093/jexbot/52.361.1711
  • Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., … Reynolds, M. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, 46–58.10.1016/j.agee.2008.01.019
  • Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., & Huang, W. (2006). Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Science, 171, 226–233.10.1016/j.plantsci.2006.03.012
  • Pant, G., Malla, S., Aruna, J., & Chauhan, U. K. (2012). Effect of dry heat treatments on viability and vigour of Cassia tora L. seeds. International Journal of Biosol, 2, 58–64.
  • Pareek, A., Singla, S. L., & Grover, A. (1998). Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Sciences, 75, 1023–1035.
  • Park, S. M., & Hong, C. B. (2002). Class I small heat-shock protein gives thermotolerance in tobacco. Journal of Plant Physiology, 159, 25–30.10.1078/0176-1617-00660
  • Park, J., Ro, H., Hwang, K., & Yiem, M. S. (2001). Effect of water stress induced by polyethylene glycol and root zone temperature on growth and mineral contents of Fuji/M. 26 apple. Journal-Korean Society for Horticultural Science, 42, 435–438.
  • Paulsen, G. M. (1994). High temperature responses of crop plants. In K. J. Boote, J. M. Bennett, T. R. Sinclair, & G. M. Paulsen (Eds.), Physiology and determination of crop yield (pp. 365–389). Madison, WI: ASA, CSSA, and SSSA.
  • Peacock, J. M., & Heinrich, G. M. (1984). Light and temperature responses in sorghum. In Agrometeorology of Sorghum and Millet in the Semi-Arid Tropics: Proceedings of the International Symposium (pp. 143–158). Patancheru, India: ICRISAT.
  • Peet, M. M., Sato, S., & Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell & Environment, 21, 225–231.
  • Penfield, S. (2008). Temperature perception and signal transduction in plants. New Phytologist, 179, 615–628.10.1111/nph.2008.179.issue-3
  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., … Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101, 9971–9975.10.1073/pnas.0403720101
  • Piramila, B. H. M., Prabha, A. L., Nandagopalan, V., & Stanley, A. L. (2012). Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. International Journal of Pharmaceutical and Phytopharmacological Research, 1, 194–202.
  • Plieth, C., Hansen, U. P., Knight, H., & Knight, M. R. (1999). Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant Journal, 18, 465–576.
  • Poehlman, J. M. (1991). The Mungbean, Oxford and IBH Publishing Co., Pvt. Ltd, New Delhi, Polowick, P. L., Sawhney, V.K. (1987). A scanning electron microscopic study on the influence of temperature on the expression of cytoplasmic male sterility in Brassica napus. Canadian Journal of Botany, 65, 807–814.
  • Polowick, P. L., & Sawhney, V. K. (1987). A scanning electron microscopic study on the influence of temperature on the expression of cytoplasmic male sterility in Brassica napus. Canadian Journal of Botany, 65, 807–814.
  • Polowick, P. L., & Sawhney, V. K. (1988). High-temperature-induced male and female sterility in canola (Brassica napus L.). Annals of Botany, 62, 83–86.
  • Popelka, J. C., Terryn, N., & Higgins, T. J. V. (2004). Gene technology for grain legumes: Can it contribute to the food challenge in developing countries? Plant Science, 167, 195–206.10.1016/j.plantsci.2004.03.027
  • Porter, J. R. (2005). Rising temperatures are likely to reduce crop yields. Nature, 436, 174.10.1038/436174b
  • Pospisilova, J., Synkova, H., Haisel, D., & Batkova, P. (2009). Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biologia Plantarum, 53, 11–20.10.1007/s10535-009-0003-5
  • Postweiler, K., Stösser, R., & Anvari, S. F. (1985). The effect of different temperatures on the viability of ovules in cherries. Scientia Horticulturae, 25, 235–239.10.1016/0304-4238(85)90120-7
  • Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., & Jansen, M. A. K. (2007). Stress-induced morphogenic responses: Growing out of trouble? Trends in Plant Science, 12, 98–105.10.1016/j.tplants.2007.01.004
  • Prabhavathi, V. R., & Rajam, M. V. (2007). Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnology, 24, 273–282.10.5511/plantbiotechnology.24.273
  • Prange, R. K., McRae, R., Midmore, D. J., & Deng, R. (1990). Reduction in potato growth at high temperature: Role of photosynthesis and dark respiration. American Potato Journal, 67, 357–369.10.1007/BF02987277
  • Prasad, P. V., Boote, K. J., Allen, L. H., & Thomas, J. M. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8, 710–721.
  • Prasad, P. V. V., Craufurd, P. Q., & Summerfield, R. J. (1999). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annals of Botany, 84, 381–386.10.1006/anbo.1999.0926
  • Prasad, P. V. V., Craufurd, P. Q., Summerfield, R. J., & Wheeler, T. R. (2000). Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). Journal of Experimental Botany, 51, 777–784.10.1093/jexbot/51.345.777
  • Prasad, P. V. V., Craufurd, P. Q., Kakani, V. G., Wheeler, T. R., & Boote, K. J. (2001). Influence of temperature during pre and post anthesis stages of floral development on fruit set and pollen germination in groundnut (Arachis hypogaea L.). Australian Journal of Plant Physiology, 28, 233–240.
  • Prasad, P. V. V., Boote, K. J., & Allen, L. H., Jr (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251.10.1016/j.agrformet.2006.07.003
  • Prasad, N. G., Dey, S., Shakarad, M., & Joshi, A. (2003). The evolution of population stability as a by-product of life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 270, S84–S86.10.1098/rsbl.2003.0020
  • Prasad, P. V. V., Boote, K. J., Vu, J. C. V., & Allen, L. H. (2004). The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Science, 166, 1565–1573.10.1016/j.plantsci.2004.02.009
  • Prasad, P. V. V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In L. H. Ahuja & S. A. Saseendran (Eds.), Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes (Advances in agricultural systems modeling series 1) (pp. 301–355). Madison, WI: ASA, CSSA.
  • Prasad, P. V. V. (2010). High-temperature tolerance in sorghum—What do we know and what are the possibilities? Proceedings of the 1st Australian Summer Grains Conference. Gold Coast, Australia.
  • Pressman, E., Peet, M. M., & Masonpharr, D. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90, 631–636.10.1093/aob/mcf240
  • Prusakova, L. D., Ezhov, M. N., & Salnikov, A. I. (1999). The use of emistim, epibrassinolide and uniconazole to overcome quality difference of buckwheat grains. Agrarian Russia, 1, 41–44.
  • Pumphrey, F. V. (1990). Field response of peas to excess heat during the reproductive stage of growth. Journal of American Society for Horticultural Science, 115, 898–900.
  • Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2, 477–486.10.1111/pbi.2004.2.issue-6
  • Queitsch, C., Hong, S. W., Vierling, E., & Lindquest, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in arabidopsis. The Plant Cell Online, 12, 479–492.10.1105/tpc.12.4.479
  • Quinby, J. R., Hesketh, J. D., & Voigt, R. L. (1973). Influence of temperature and photoperiod on floral initiation and leaf number in sorghum. Crop Science, 13, 243–246.10.2135/cropsci1973.0011183X001300020028x
  • Rahman, M. M. (2004). Response of wheat genotypes to late seedling heat stress (MS thesis). Department of Crop Botany. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur.
  • Rainey, K. M., & Griffiths, P. D. (2005). Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.). Journal of American Society for Horticultural Science, 130, 700–706.
  • Rani, B., Dhawan, K., Jain, V., Chhabra, M. L., & Singh, D. (2013). High temperature induced changes in antioxidative enzymes in Brassica juncea (L.) Czern & Coss. Retrieved from http://www.australianoilseeds.com/__data/assets/pdf_file/0003/6861/46_
  • Rao, G. U., Jain, A., & Shivanna, K. R. (1992). Effects of high temperature stress on Brassica pollen: Viability, germination and ability to set fruits and seeds. Annals of Botany, 69, 193–198.
  • Rasheed, R., Wahid, A., Ashraf, M., & Basra, S. M. A. (2010). Role of proline and glycinebetaine in improving chilling stress tolerance in sugarcane buds at sprouting. International Journal of Agricultural and Biology, 12, 1–8.
  • Rasheed, R., Wahid, A., Farooq, M., Hussain, I., & Basra, S. M. A. (2011). Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulation, 65, 35–45.10.1007/s10725-011-9572-3
  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.10.1146/annurev.pp.43.060192.002255
  • Reda, F., & Mandoura, H. M. H. (2011). Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. International Journal of Academic Research, 3, 108–115.
  • Reddy, B. V. S., Kumar, A. A., Sharma, H. C., Srinivasa, R. P., Blümmel, M., Reddy, R. C. H., … Dinakaran, E. (2012). Sorghum improvement (1980–2010): Status and way forward. Journal of Semi-Arid Tropical Agricultural Research, 10.
  • Reddy, V. R., Baker, D. N., & Hodges, H. F. (1990). Temperature and mepiquat chloride effects on cotton canopy architecture. Agronomy Journal, 82, 190–195.10.2134/agronj1990.00021962008200020004x
  • Reddy, S., Bhatnagar-Mathur, P., Vadez, V., & Sharma, K. K. (2012). Grain legumes (soybean, chickpea, and peanut): Omics approaches to enhance abiotic stress tolerance. In N. Tuteja, S. S. Gill, A. F. Tiburcio, & R. Tuteja (Eds.), Improving crop resistance to abiotic stress (1st ed.). Singapore: Wiley-VCH Verlag GmbH. KGaA.
  • Reddy, K. R., Davidonis, G. H., Johnson, A. S., & Vinyard, B. T. (1999). Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agronomy Journal, 91, 851–858.10.2134/agronj1999.915851x
  • Reddy, K. R., Vara Prasad, P. V., & Kakani, V. G. (2005). Crop responses to elevated carbon dioxide and interactions with temperature: Cotton. Journal of Crop Improvement, 13, 157–191.10.1300/J411v13n01_08
  • Refay, Y. A. (2011). Yield and yield component parameters of bread wheat genotypes as affected by sowing dates: Middle-East. Journal of Scientific Research, 7, 484–489.
  • Rehman, A. U., Habib, I., Ahmad, N., Hussain, M., Khan, M. A., Farooq, J., & Ali, M. A. (2009). Screening wheat germplasm for heat tolerance at terminal growth stage. Plant Omics Journal, 2, 9–19.
  • Ren, C., Bilyeu, K. D., & Beuselinck, P. (2009). Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Science, 49, 1010–1022.10.2135/cropsci2008.05.0247
  • Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., … Slafer, G. (2012). Achieving yield gains in wheat. Plant Cell & Environment, 35, 1799–1823.
  • Ridge, P. E., & Pye, D. L. (1985). The effects of temperature and frost at flowering on the yield of peas grown in a Mediterranean environment. Field Crops Research, 12, 339–346.10.1016/0378-4290(85)90079-6
  • Ristic, Z., Bukovnik, U., & Prasad, P. V. V. (2007). Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science, 47, 2067–2073.10.2135/cropsci2006.10.0674
  • Rizshky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.10.1104/pp.103.033431
  • Robertson, A. I., Ishikawa, M., Custa, L. V., & MacKenzie, S. I. (1994). Abscisic acid-induced heat tolerance in Bromus inermis Leyss. cell-suspension culture’s heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiology, 105, 181–190.10.1104/pp.105.1.181
  • Rodrigo, J., & Herrero, M. (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae, 92, 125–135.10.1016/S0304-4238(01)00289-8
  • Rodrigues, C., Laranjo, M., & Oliveira, S. (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Current Microbiology, 53, 1–7.10.1007/s00284-005-4515-8
  • Ronde, J., Mescht, A., & Steyn, H. S. F. (2001). Proline accumulation in response to drought and heat stress in cotton. African Crop Science Journal, 8, 85–91.
  • Rousch, J. M., Bingham, S. E., & Sommerfeld, M. R. (2004). Protein expression during heat stress in thermo-intolerant and thermo-tolerant diatoms. Journal of Experimental Marine Biology and Ecology, 306, 231–243.10.1016/j.jembe.2004.01.009
  • Roy, C. D., Tarafdar, S., Das, M., & Kundagrami, S. (2012). Screening lentil (Lens culinaris Medik.) germplasms for heat tolerance. Trends in Biosciences, 5, 143–146.
  • Saadalla, M. M., Quick, J. S., & Shanahan, J. F. (1990). Heat tolerance in winter wheat: II. Membrane thermostability and field performance. Crop Science, 30, 1248–1251.10.2135/cropsci1990.0011183X003000060018x
  • Sagor, G. H. M., Liu, T., Takahashi, H., Niitsu, M., Berberich, T., & Kusano, T. (2013). Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. Plant Cell Reports, 32, 1477–1488.10.1007/s00299-013-1459-5
  • Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J., & Goloubinoff, P. (2009). The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. The Plant Cell Online, 21, 2829–2843.10.1105/tpc.108.065318
  • Saini, H. S., & Aspinall, D. (1981). Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Annals of Botany, 48, 623–633.
  • Saini, H. S., Sedgley, M., & Aspinall, D. (1983). Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Australian Journal of Plant Physiology, 10, 137–144.10.1071/PP9830137
  • Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell & Environment, 25, 163–171.
  • Sakata, T., & Higashitani, A. (2008). Male sterility accompanied with abnormal anther development in plants—Genes and environmental stresses with special reference to high temperature injury. International Journal of Plant Developmental Biology, 2, 42–51.
  • Salchert, K., Bhalerao, R., Koncz-Kalman, Z., & Koncz, C. (1998). Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1517–1520.10.1098/rstb.1998.0307
  • Saleh, A. A. H., Abdel-Kader, D. Z., & El Elish, A. L. (2007). Role of heat shock and salicylic acid in antioxidant homeostasis in Mungbean (Vigna radiata L.) plant subjected to heat stress. American Journal of Plant Physiology, 2, 344–355.
  • Salem, M. A., Kakani, V. G., Koti, S., & Reddy, K. R. (2007). Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 47, 219–231.10.2135/cropsci2006.07.0443
  • Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120, 179–186.10.1111/ppl.2004.120.issue-2
  • Sanmiya, K., Suzuki, K., Egawa, Y., & Shono, M. (2004). Mitochondrial small heat shock protein enhances thermotolerance in tobacco plants. FEBS Letters, 557, 265–268.10.1016/S0014-5793(03)01494-7
  • Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97, 731–738.10.1093/aob/mcl037
  • Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell and Environment, 23, 719–726.10.1046/j.1365-3040.2000.00589.x
  • Saurez, R., Calderon, C., & Iturriaga, G. (2008). Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science, 49, 1791–1799.
  • Savchenko, G., Klyuchareva, E., Abramchik, L., & Serdyuchenko, E. (2002). Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 49, 349–359.10.1023/A:1015592902659
  • Savicka, M., & Škute, N. (2010). Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija, 56, 26–33.10.2478/v10055-010-0004-x
  • Savicka, M., & Škute, N. (2012). Some morphological, physiological and biochemical characteristics of wheat seedling Triticum aestivum L. organs after high-temperature treatment. Ekologija, 58, 9–21.
  • Saxena, M. C., Saxena, N. P., & Mohamed, A. K. (1988). High temperature stress. In R. J. Summerfield (Ed.), World crops: Cool season food legumes (pp. 845–856). Dordrecht: Kluwer Academic.
  • Schoffl, F., Prandl, R., & Reindl, A. (1999). Molecular responses to heat stress. In K. Shinozaki & K. Yamaguchi-Shinozaki (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants (pp. 81–98). Austin, TX: Landes, R.G.
  • Schuster, W. S., & Monson, R. K. (1990). An examination of the advantages of C3-C4 intermediate photosynthesis in warm environments. Plant Cell and Environment, 13, 903–912.10.1111/pce.1990.13.issue-9
  • Shekhawat, K., Rathore, S. S., Premi, O. P., Kandpal, & Chauhan, J. S. (2012). Advances in agronomic management of Indian mustard (Brassica juncea (L.) Czernj. Cosson): An overview. International Journal of Agriculture, 2012, 1–14. doi:10.1155/2012/408284
  • Senaratna, T., Touchell, T., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.10.1023/A:1006386800974
  • Senaratna, T., Merritt, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. (2003). Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81.10.1023/A:1021865029762
  • Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A. F. I., Leube, M. P., Mendizabal, I., … Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.10.1093/jxb/50.Special_Issue.1023
  • Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 257, 219–226.10.1023/A:1026237816578
  • Shahbaz, M., Ashraf, M., & Athar, H. U. R. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth and Regulation, 55, 51–64.10.1007/s10725-008-9262-y
  • Shanmugasundaram, S. (2003). Present situation and economic importance of legumes in Asia and Pacific region. In S. Shanmugasundaram (Ed.), Processing and utilization of legumes. Tokyo, Japan: Asian Productivity Organization.
  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135.10.1007/s10725-005-5482-6
  • Shi, W. M., Muramoto, Y., Ueda, A., & Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273, 23–27.10.1016/S0378-1119(01)00566-2
  • Simoes-Araujo, J. L., Rumjanek, N. G., & Margis Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 37–41.
  • Singh, I., & Shono, M. (2005). Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato Plant Growth and Regulation, 47, 111–119.10.1007/s10725-005-3252-0
  • Singh, N. H., & Dhaliwal, G. S. (1972). Effect of soil temperature on seedling emergence in different crops. Plant Soil, 37, 441–444.10.1007/BF02139989
  • Singh, J. P., Shambhoo, P., Singh, K. N., & Randhir, S. (2007). Screening of heat tolerant wheat varieties by membrane thermostability index in relation to yield and yield attributing traits. International Journal of Plant Sciences, Muzzaffarnagar, 2, 159–165.
  • Sinsawat, V., Leipner, J., Stamp, P., & Fracheboud, Y. (2004). Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany, 52, 123–129.10.1016/j.envexpbot.2004.01.010
  • Smith, K. L. (1996). Ohio agronomy guide for corn production. Columbus, GA: Ohio State University USA, bulletin, 472.
  • Snider, J. L., Oosterhuis, D. M., Skulman, B. W., & Kawakami, E. M. (2009). Heat stress induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137, 125–138.10.1111/ppl.2009.137.issue-2
  • Snider, J. L., Oosterhuis, D. M., Loka, D. A., & Kawakami, E. M. (2011). High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. Journal of Plant Physiology, 168, 1168–1175.10.1016/j.jplph.2010.12.011
  • Snyder, A. M. (2000). The effects of elevated carbon dioxide and temperature on two cultivars of rice (M.S. thesis). University of Florida, Gainesville.
  • Soliman, W. S., Fujimori, M., Tase, K., & Sugiyama, S. (2011). Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Science, 57, 101–106.10.1111/grs.2011.57.issue-2
  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., … Miller, H. L. (2007). Climate change 2007 the physical science basis. In Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 996). Cambridge: Cambridge University Press.
  • Song, L., Ding, W., Zhao, M., Sun, B., & Zhang, L. (2006). Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Science, 171, 449–458.10.1016/j.plantsci.2006.05.002
  • Song, L., Ding, W., Shen, J., Zhang, Z., Bi, Y., & Zhang, L. (2008). Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Science, 175, 826–832.10.1016/j.plantsci.2008.08.005
  • Song, S. Q., Lei, Y. B., & Tian, X. R. (2005). Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian Journal of Plant Physiology, 52, 793–800.10.1007/s11183-005-0117-3
  • Srinivasan, A., Saxena, N. P., & Johansen, C. (1999). Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.), genetic variation in gamete development and function. Field Crops Research, 60, 209–222.10.1016/S0378-4290(98)00126-9
  • Srinivasan, A., Takeda, H., & Senboku, T. (1996). Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica, 88, 35–45.10.1007/BF00029263
  • Srivastava, R., Deng, Y., & Howell, S. H. (2014). Stress sensing in plants by an ER stress sensor/transducer, bZIP28. Frontiers in Plant Science, 5, 59.
  • Stanfield, B., Ormrod, D. P., & Fletcher, H. F. (1966). Response of peas to environment: II. Effects of temperature in controlled-environment cabinets. Canadian Journal of Plant Science, 46, 195–203.10.4141/cjps66-029
  • Stevens, M. A., & Rudich, J. (1987). Genetic potential for overcoming physiological limitations on adaptability, yield, and quality of the tomato. Horticultural Science, 13, 673–679.
  • Stone, P. (2001). The effects of heat stress on cereal yield and quality. In A. S. Basra (Ed.), Crop responses and adaptations to temperature stress (pp. 243–291). New York, NY: Food Products Press, Binghamton.
  • Sugio, A., Dreos, R., Aparicio, F., & Maule, A. J. (2009). The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. The Plant Cell Online, 21, 642–654.10.1105/tpc.108.062596
  • Sukhvibul, N., Whiley, A. W., Smith, M. K., Hetherington, S. E., & Vithanage, V. (1999). Effect of temperature on inflorescence and floral development in four mango (Mangifera indica L.) cultivars. Scientia Horticulturae, 82, 67–84.10.1016/S0304-4238(99)00041-2
  • Sullivan, C. Y. (1972). Mechanisms of heat and drought resistance in grain soghum and methods of measurement. In N. G. P. Rao & L. R. House (Eds.), Sorghum in the seventies (pp. 247–264). New Delhi: Oxford and IBH Publishing.
  • Sullivan, C. Y., & Ross, W. M. (1979). Selecting for drought and heat resistance in grain sorghum. In H. Musell & R. C. Staples (Eds.), Stress physiology in crop plants (pp. 263–281). New York, NY: Wiley.
  • Sumayao, C. R., Kanemasu, E. T., & Hodges, T. (1977). Soil moisture effects on transpiration and net carbon dioxide exchange of sorghum. Agricultural Meteorology, 18, 401–408.10.1016/0002-1571(77)90006-1
  • Sung, D. Y., Kaplan, F., Lee, K. J., & Guy, C. L. (2003). Acquired tolerance to temperature extremes. Trends in Plant Science, 8, 179–187.10.1016/S1360-1385(03)00047-5
  • Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-gyamfi, J. J., Nguyen, N. T., … Fujita, K. (2010). High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48, 124–130.10.1016/j.plaphy.2009.12.010
  • Suzuki, K., Tsukaguchi, T., Takeda, H., & Egawa, Y. (2001). Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126, 571–574.
  • Taghizadeh, R., & Shrifi, R. S. (2010). Effects of post anthesis heat stress on yield and yield attributes in wheat (Triticum aestivum) genotypes. Journal of Food, Agriculture and Environment, 8, 775–777.
  • Takeda, H., Cenpukelee, U., Chauhan, Y. S., Srinivasan, A., Hossain, M. M., Rashad, M. H., … Hayashi, T. (1999). Studies in heat tolerance of Brassica vegetables and legumes at the International Collaboration Research Station. Proceedings of Workshop on Heat Tolerance of Crop ( JIRCAS Working Report, 14) (pp. 17–29). Okinawa, Japan.
  • Takeoka, Y., Hiroi, K., Kitano, H., & Wada, T. (1991). Pistil hyperplasia in rice spikelets as affected by heat-stress. Sexual Plant Reproduction, 4, 39–43.
  • Talwar, H. S., & Yanagihara, S. (1999). Physiological basis of heat tolerance during flowering and pod setting stages in groundnut (Arachis hypogaea L.) (JIRCAS Workshop Report No: 14, JIRCAS) (pp. 47–65). Tsubuka, Japan.
  • Talwar, H. S., Takeda, H., Yashima, S., & Senboku, T. (1999). Growth and photosynthetic responses of groundnut genotypes to high temperature. Crop Science, 39, 460–466.10.2135/cropsci1999.0011183X0039000200027x
  • Tan, W., Meng, Q. W., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168, 2063–2071.10.1016/j.jplph.2011.06.009
  • Teplova, I. R., Farkhutdinov, R. G., Mitrichenko, A. N., Ivanov, I. I., Veselov, S. Y., Valcke, R. L., & Kudoyarova, G. R. (2000). Response of tobacco plants transformed with the ipt gene to elevated temperature. Russian Journal of Plant Physiology, 47, 367–369.
  • Tewolde, H., Fernandez, C. J., & Erickson, C. A. (2006). Wheat cultivars adapted to post-heading high temperature stress. Journal of Agronomy and Crop Science, 192, 111–120.10.1111/jac.2006.192.issue-2
  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 67, 429–443.10.1016/j.envexpbot.2009.09.004
  • Thomas, J. M. G., Boote, K. J., Allen, L. H., Jr., Gallo-Meagher, M., & Davis, J. M. (2003). Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science, 43, 1548–1557.10.2135/cropsci2003.1548
  • Thussaganpanit, J., Jutmanee, K., Chai-Arree, W., & Kaveeta, L. (2012). Increasing photosynthetic efficiency and pollen germination with 24-epibrassinolide in rice (Oryza sativa L.), under heat stress. Thai Journal of Botany, 4, 135–143.
  • Tickoo, J. L., Gajraj, R. M., & Manji, C. (1996). Plant type in mungbean (Vigna radiata L.) Wilczek). In A. N. Asthana & D. H. Kim (Eds.), Proceedings of recent advances in Mungbean research (pp. 197–213). Kanpur, India: Indian Society of Pulses Research and Development, Indian Institute of Pulses Research.
  • Timlin, D., Rahman, S. M. L., Baker, J., Reddy, V. R., Fleisher, D., & Quebedeaux, B. (2006). Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agronomy Journal, 98, 1195–1203.10.2134/agronj2005.0260
  • Toker, C., Lluch, C., Tejera, N. A., Serraj, R., & Siddique, K. H. M. (2007). Abiotic stress. In S. S. Yadav, R. J. Redden, W. Chen, B. Sharma (Eds.), Chickpea breeding and management (pp. 474–496). Wallingford: CABI.10.1079/9781845932138.000
  • Tong-Xiang, L., Zong-Shen, Z., Jian-Bo, W., & Rong-Qian, L. (2009). Changes in abscisic acid immunolocalization in heat-stressed pepper seedlings. Pakistan Journal of Botany, 41, 1173–1178.
  • Trent, J. D. (1996). A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in Archaea. FEMS Microbiology Reviews, 18, 249–258.10.1111/j.1574-6976.1996.tb00241.x
  • Tripp, J., Mishra, S. K., & Scharf, K. D. (2009). Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell and Environment, 32, 123–133.10.1111/pce.2009.32.issue-2
  • Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., & Egawa, Y. (2003). Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Production Science, 6, 4–27.
  • Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163, 515–523.10.1016/S0168-9452(02)00159-0
  • Upreti, K. K., & Murti, G. S. R. (2004). Effects of brassmosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biologia Plantarum, 48, 407–411.10.1023/B:BIOP.0000041094.13342.1b
  • Vander Maesen, L. J. G. (1972). A monograph of the genus, with special references to the chickpea (Cicer arietinum L.) its ecology and cultivation (pp. 1–341). Wageningen: Mendelingen Landbouwhoge School.
  • Vardhini, B. V., & Rao, S. S. R. (2003). Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulation, 41, 25–31.10.1023/A:1027303518467
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151, 59–66.10.1016/S0168-9452(99)00197-1
  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 579–620.10.1146/annurev.pp.42.060191.003051
  • Vollenweider, P., & Günthardt-Goerg, M. S. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution, 137, 455–465.10.1016/j.envpol.2005.01.032
  • Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth and Regulation, 46, 133–141.10.1007/s10725-005-8379-5
  • Wahid, A. (2007). Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of Plant Research, 120, 219–228.10.1007/s10265-006-0040-5
  • Wahid, A., & Close, T. J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 51, 104–109.10.1007/s10535-007-0021-0
  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.10.1016/j.envexpbot.2007.05.011
  • Wahid, A., Sehar, S., Perveen, M., Gelani, S., Basra, S. M. A., & Farooq, M. (2008). Seed pretreatment with hydrogen peroxide improves heat tolerance in maize at germination and seedling growth stages. Seed Science and Technology, 36, 633–645.10.15258/sst
  • Wallace, D. H. (1980). Adaptation of Phaseolus to different environments. In R. J. Summerfield & A. Banting (Eds.), Advances in legume science (pp. 349–357). Kew: Royal Botanical Gardens.
  • Wang, L. J., & Li, S. H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170, 685–694.10.1016/j.plantsci.2005.09.005
  • Wang, J., Gan, Y. T., Clarke, F., & McDonald, C. L. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46, 2171–2178.10.2135/cropsci2006.02.0092
  • Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., Cheng, J. S., … Li, S. H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10, 34.10.1186/1471-2229-10-34
  • Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.10.1016/j.tplants.2004.03.006
  • Wardlaw, I. F. (1994). The effect of high temperature on kernel development in wheat: Variability related to pre-heading and post-anthesis conditions. Australian Journal of Plant Physiology, 21, 731–739.10.1071/PP9940731
  • Wardlaw, I. F., Dawson, I. A., Munibi, P., & Fewster, R. (1989). The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Australian Journal of Agricultural Research, 40, 1–13.10.1071/AR9890001
  • Wardlaw, I. F., Blumenthal, C., Larroque, O., & Wrigley, C. W. (2002). Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Functional Plant Biology, 29, 25–34.10.1071/PP00147
  • Warrag, M. O. A., & Hall, A. E. (1984). Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crops Research, 8, 17–33.10.1016/0378-4290(84)90049-2
  • Wassmann, R., Jagadish, S., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., … Heuer, S. (2009). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.10.1016/S0065-2113(09)01003-7
  • Weerakoon, W. M. W., Maruyama, A., & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 194, 135–140.10.1111/j.1439-037X.2008.00293.x
  • Wen, P. F., Chen, J. Y., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., … Huang, W. D. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55, 1–10.10.1007/s10725-007-9250-7
  • Whittle, C. A., Otto, S. P., Johnston, M. O., & Krochko, J. E. (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany, 87, 650–657.10.1139/B09-030
  • Wilhelm, E. P., Mullen, R. E., Keeling, P. L., & Singletary, G. W. (1999). Heat stress during grain filling in maize. Crop Science, 39, 1733–1741.10.2135/cropsci1999.3961733x
  • Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. D. (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell and Environment, 27, 717–724.10.1111/pce.2004.27.issue-6
  • Wu, H. C., & Jinn, T. L. (2010). Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signaling & Behaviour, 5, 1252–1256.
  • Xiong, L., Lee, H., Ishitani, M., & Zhu, J. K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. Journal of Biological Chemistry, 277, 8588–8596.10.1074/jbc.M109275200
  • Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274–285.10.1016/j.envexpbot.2005.03.002
  • Yan, K., Chen, P., Shao, H., Shao, C., & Zhao, S. (2013). Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS One, 8, e62100. doi:10.1371/journal.pone.0062100
  • Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138, 2299–2309.10.1104/pp.105.063164
  • Yang, J. D., Yun, J. Y., Zhang, T. H., & Zhao, H. L. (2006). Pre-soaking with nitric oxide donor SNP alleviates heat shock damages in mungbean leaf discs. Botanical Studies, 47, 129–136.
  • Yang, H., Wu, F., & Cheng, J. (2011). Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chemistry, 127, 1237–1242.10.1016/j.foodchem.2011.02.011
  • Yeh, C. H., Kaplinsky, N. J., Hu, C., & Charng, Y. Y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10–23.10.1016/j.plantsci.2012.06.004
  • Yin, X., Kroff, M. J., & Goudriann, J. (1996). Differential effects of day and night temperature on development to flowering in rice. Annals of Botany, 77, 203–213.10.1006/anbo.1996.0024
  • Yin, H., Chen, Q., & Yi, M. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45–54.
  • Young, L. W., Wilen, R. W., & Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55, 485–495.10.1093/jxb/erh038
  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nogues, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135–1143.10.1093/jxb/erh124
  • Zhang, X., Cai, J., Wollenweber, B., Liu, F., Dai, T., Cao, W., & Jiang, D. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science, 57, 134–140.10.1016/j.jcs.2012.10.010
  • Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224, 545–555.10.1007/s00425-006-0242-z
  • Zhang, G. L., Chen, L. Y., Zhang, S. T., Zheng, H., & Liu, G. H. (2009). Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Science, 16, 65–71.10.1016/S1672-6308(08)60058-X
  • Zhou, M. L., Ma, J. T., Pang, J. F., Zhang, Z. L., Tang, Y. X., & Wu, Y. M. (2010). Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. African Journal of Biotechnology, 9, 9255–9279.
  • Zhu, B., Xiong, A. S., Peng, R. H., Xu, J., Zhou, J., Xu, J. T., … Yao, Q. H. (2008). Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. BMB Reports, 41, 382–387.10.5483/BMBRep.2008.41.5.382
  • Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61, 1959–1968.10.1093/jxb/erq053