1,336
Views
12
CrossRef citations to date
0
Altmetric
Research article

Endophytes from the crop wild relative Hordeum secalinum L. improve agronomic traits in unstressed and salt-stressed barley

, , & | (Reviewing editor)
Article: 1549195 | Received 28 Sep 2018, Accepted 13 Nov 2018, Published online: 21 Nov 2018

References

  • Alikhani, M., Khatabi, B., Sepehri, M., Nekouei, M. K., Mardi, M., & Salekdeh, G. H. (2013). A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Molecular BioSystems, 9, 1498–1510. doi:10.1039/c3mb70069k
  • Azad, K., & Kaminskyj, S. (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis (Philadelphia, Pa.), 68, 73–78. doi:10.1007/s13199-015-0370-y
  • Bagheri, A. A., Saadatmand, S., Niknam, V., Nejadsatari, T., & Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L .) under salinity stress. International Journal of Advanced Biological and Biomedical Research, 1, 1337–1350.
  • Bu, N., Li, X., Li, Y., Ma, C., Ma, L., & Zhang, C. (2012). Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotoxicoogy and Environmental Safety, 78, 35–40. doi:10.1016/j.ecoenv.2011.11.007
  • Cannon, P. F., & Kirk, P. M. (Ed.). (2007). Fungal families of the world. London: CABI.
  • Cheng, Z., Woody, O. Z., Mc Conkey, B. J., & Glick, B. R. (2012). Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Applied Soil Ecology, 61, 255–263. doi:10.1016/j.apsoil.2011.10.006
  • Cheplick, G. P. (2017). Persistence of endophytic fungi in cultivars of Lolium perenne grown from seeds stored for 22 years. American Journal of Botany, 104, 627–631. doi:10.3732/ajb.1700030
  • Dregne, H. E., Kassas, M., & Rozanov, B. (1991). A new assessment of the world status of desertification. Desertification Control Bulletin, 20, 6–18.
  • FAO. (2002). Crops and drops: Making the best use of water for agriculture. FAO, Rome, Italy. Retrieved from http://www.fao.org/docrep/w5146e/w5146e0a.htm. doi:10.1044/1059-0889(2002/er01)
  • FAO. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. London: Food and Agriculture Organization of the United Nations, Rome and Earthscan.
  • FAO. (2016). AQUASTAT website. Food and Agriculture Organization of the Unirted Nations, Rome, Italy. Website accessed on 2018/ 07/31.
  • FAO/UNESCO. (1974). FAO/UNESCO soil map of the world | FAO SOILS PORTAL | Food and Agriculture Organization of the United Nations, Rome, Italy.
  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes — Application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.
  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources. Canberra, Australia: University of New South Wales Press Ltd.
  • Gond, S. K., Torres, M. S., Bergen, M. S., Helsel, Z., & White, J. F., Jr. (2015). Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Letters in Applied Microbiology, 60, 392–399. doi:10.1111/lam.2015.60.issue-4
  • Hammami, H., Baptista, P., Martins, F., Gomes, T., Abdelly, C., & Mahmoud, O. M. B. (2016). Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.). World Journal of Microbiology and Biotechnology, 32, 184. doi:10.1007/s11274-016-2142-0
  • Hodkinson, T. R., Waldren, S., Parnell, J. A. N., Kelleher, C. T., Salamin, K., & Salamin, N. (2007). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 17–29. doi:10.1007/s10265-006-0059-7
  • Hodkinson, T.R., Murphy, B.R. (2019). Endophytes for a Growing World. In: Hodkinson, T., Doohan, F., Saunders, M., Murphy, B. (eds). Endophytes for a Growing World, pp. 18–45. Cambridge University Press.
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Review of Plant Science, 30, 435–458. doi:10.1080/07352689.2011.605739
  • Katerji, N., van Hoorn, J. W., Hamdy, A., Mastrorilli, M., Fares, C., Ceccarelli, S., … Oweis, T. (2006). Classification and salt tolerance analysis of barley varieties. Agricultural Water Management, 85, 184–192. doi:10.1016/j.agwat.2006.04.006
  • Khan, A. L., Hamayun, M., Ahmad, N., Hussain, J., Kang, S. M., Kim, Y. H., … Lee, I. J. (2011). Salinity stress resistance offered by endophytic fungal interaction between penicillium minioluteum LHL09 and glycine max. L. Journal of Microbiology and Biotechnology, 21, 893–902. doi:10.4014/jmb.1103.03012
  • Khan, A. L., Waqas, M., Hussain, J., Kang, S.-M., Gilani, S. A., & Lee, I.-J. (2013). Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World Journal of Microbiology & Biotechnology, 29, 2133–2144. doi:10.1007/s11274-013-1378-1
  • Khan, A. L., Waqas, M., & Lee, I.-J. (2015). Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. Journal of Plant Research, 128, 259–268. doi:10.1007/s10265-014-0688-1
  • Li, L., Wang, X., Zhu, P., Wu, H., & Qi, S. (2017). Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiology and Biochemistry, 119, 211–223. doi:10.1016/j.plaphy.2017.09.003
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Murphy, B. R., Doohan, F. M., & Hodkinson, T. R. (2018). From concept to commerce: Developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 1–11. doi:10.3390/jof4010024
  • Nelson, M., & Mareida, M. (2001, May 21–25). Environmental impacts of the CGIAR: An assessment. Document SDR/TAC:IAR/01/11. Presented at mid-term meeting of the Consultative Group for International Agricultural Research. Montpellier, France.
  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1991). World map of the status of human induced soil degradation: An explanatory note. Wageningen, The Netherlands: ISRIC/UNEP.
  • Paul, D., & Lade, H. (2014). Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agronomy for Sustainable Development, 34, 737–752. doi:10.1007/s13593-014-0233-6
  • Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils : A review. Land Degradation & Development, 11, 501–521. doi:10.1002/1099-145X(200011/12)11:6<501::AID-LDR405>3.0.CO;2-S
  • Qin, Y., Druzhinina, I. S., Pan, X., & Yuan, Z. (2016). Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34, 1245–1259. doi:10.1016/j.biotechadv.2016.08.005
  • Queensland Government, The State of Queensland. (2016). Impacts of salinity | Environment, land and water | Queensland Government. Retrieved July 31, 2018, from https://www.qld.gov.au/environment/land/soil/salinity/impacts
  • Redman, R. S., Kim, Y. O., Woodward, C. J. D. A., Greer, C., Espino, L., Doty, S. L., & Rodriguez, R. J. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PloS One, 6, e14823. doi:10.1371/journal.pone.0014823
  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613. doi:10.1071/FP09249
  • Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., … Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404–416. doi:10.1038/ismej.2007.106
  • Sanchez Marquez, S., Bills, G. F., Herrero, N., & Zabalgogeazcoa, I. (2012). Non-systemic fungal endophytes of grasses. Fungal Ecology, 5, 289–297. doi:10.1016/j.funeco.2010.12.001
  • Schulthess, F. M., & Faeth, S. H. (1998). Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia, 90, 569–578. doi:10.1080/00275514.1998.12026945
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131. doi:10.1016/j.sjbs.2014.09.012
  • Siddikee, M. A., Glick, B. R., Chauhan, P. S., Yim, W. J., & Sa, T. (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1- carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 49, 427–434. doi:10.1016/j.plaphy.2011.01.015
  • Straub, D., Yang, H., Liu, Y., & Ludewig, U. (2013). Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30 T. Journal of Experimental Botany, 64, 4603–4615. doi:10.1093/jxb/ert276
  • Umali, D. L. (1993). Irrigation–Induced salinity: A growing problem for development and the environment: Technical paper 215. Washington, DC: World Bank.
  • USDA, ARS, National Genetic Resources Program. (2014). Germplasm Resources Information Network – (GRIN) [Online database]. Beltsville, Maryland. Retrieved July 31, 2018, from https://npgsweb.ars-grin.gov/gringlobal/search.aspx
  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols, a guide to methods and applications (pp. 315–322). New York, USA: Innis MA. Academic.
  • Yaish, M. W., Antony, I., & Glick, B. R. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie van Leeuwenhoek, 107, 1519–1532. doi:10.1007/s10482-015-0445-z
  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421. doi:10.1111/wre.1974.14.issue-6
  • Zhang, Y. P., & Nan, Z. B. (2007). Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. Journal of Agronomy and Crop Science, 193, 377–386. doi:10.1111/jac.2007.193.issue-6