2,628
Views
10
CrossRef citations to date
0
Altmetric
Research article

Curcumin increases insulin sensitivity in C2C12 muscle cells via AKT and AMPK signaling pathways

, , , , & | (Reviewing editor) show all
Article: 1577532 | Received 07 Dec 2018, Accepted 29 Jan 2019, Published online: 06 Mar 2019

References

  • Absalan, A., etal (2012). C2C12 cellline is a good model to explore the effects of herbal extracts on GLUT4 expression and translocation.
  • Absalan, A., Mohiti-Ardakani, J., Hadinedoushan, H., & Khalili, M. A. (2012). Hydro-Alcoholic cinnamon extract, enhances glucose transporter isotype-4 translocation from intracellular compartments into the cytoplasmic membrane of C2C12 myotubes. Indian Journal of Clinical Biochemistry, 27(4), 351–356. doi:10.1007/s12291-012-0214-y
  • Ahmadipour, F., Vakili, T., & Absalan, A., et al. (2012). C2C12 cell line is a good model to explore the effects of herbal extracts on GLUT4 expression and translocation. Iranian Journal of Diabetes and Obesity, 4(4), 143-151.
  • Amitani, H., Asakawa, A., Cheng, K., Amitani, M., Kaimoto, K., Nakano, M., … Sanchez-Margalet, V. (2013). Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle. PloS One, 8(1), e53913. doi:10.1371/journal.pone.0053913
  • Baeeri, M., Momtaz, S., Navaei-Nigjeh, M., Niaz, K., Rahimifard, M., Ghasemi-Niri, S. F., … Abdollahi, M. (2017). Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells. Food and Chemical Toxicology, 100, 8–23. doi:10.1016/j.fct.2016.12.008
  • Brasnyó, P., Ga, M., Mohás, M., Markó, L., Laczy, B., Cseh, J., … Wittmann, I. (2011). Resveratrolimprovesinsulinsensitivity,reducesoxidativestress and activates the Akt pathway in type 2 diabetic patients. British Journal of Nutrition, 106(3), 383–389. doi:10.1017/S0007114511000316
  • Burattini, S., Ferri, P., Battistelli, M., Curci, R., & Luchetti, F. (2004). E FalcieriC2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. European Journal of Histochemistry, 48(3), 213–222.
  • Cheng, Z., Pang, T., Gu, M., Gao, A.-H., Xie, C.-M., Li, J.-Y., … Li, J. (2006). Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochimica Et Biophysica Acta (BBA)-General Subjects, 1760(11), 1682–1689. doi:10.1016/j.bbagen.2006.09.007
  • Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C., & Jirawatnotai, S. (2012). Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 35(11), 2121–2127. doi:10.2337/dc12-0116
  • DeFronzo, R., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30(12), 1000–1007.
  • Dugani, C. B., & Klip, A. (2005). Glucose transporter 4: Cycling, compartments and controversies: Third in the cycles review series. EMBO Reports, 6(12), 1137–1142. doi:10.1038/sj.embor.7400584
  • El-Moselhy, M. A., Taye, A., Sharkawi, S. S., El-Sisi, S. F. I., & Ahmed, A. F. (2011). The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food and Chemical Toxicology, 49(5), 1129–1140. doi:10.1016/j.fct.2011.02.004
  • Gupta, S. K., Kumar, B., Nag, T. C., Agrawal, S. S., Agrawal, R., Agrawal, P., … Srivastava, S. (2011). Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. Journal of Ocular Pharmacology and Therapeutics, 27(2), 123–130. doi:10.1089/jop.2010.0123
  • Hwang, Y. P., Kim, H. G., Choi, J. H., Do, M. T., Chung, Y. C., Jeong, T. C., & Jeong, H. G. (2013). S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. The Journal of Nutritional Biochemistry, 24(8), 1469–1478. doi:10.1016/j.jnutbio.2012.12.006
  • Jain, S. K., Rains, J., Croad, J., Larson, B., & Jones, K. (2009). Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxidants & Redox Signaling, 11(2), 241–249. doi:10.1089/ars.2008.2140
  • Jarvill-Taylor, K. J., Anderson, R. A., & Graves, D. J. (2001). A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. Journal of the American College of Nutrition, 20(4), 327–336.
  • Jung, K. H., Choi, H. S., Kim, D. H., Han, M. Y., Chang, U. J., Yim, S.-V., … Kang, S. A. (2008). Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol3-kinase-mediatedpathwayinL6ratskeletalmusclecells. Journal of Medicinal Food, 11(3), 429–434. doi:10.1089/jmf.2007.0107
  • Kang, C., Jin, Y. B., Lee, H., Cha, M., Sohn, E.-T., Moon, J., … Kim, E. (2010). Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food and Chemical Toxicology, 48(2), 509–516. doi:10.1016/j.fct.2009.11.004
  • Kang, C., & Kim, E. (2010). Synergisticeffectofcurcuminandinsulinonmusclecellglucosemetabolism. Foodand Chemical Toxicology, 48(8–9), 2366–2373. doi:10.1016/j.fct.2010.05.073
  • Kang, C., Lee, H., Jung, E.-S., et al. (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food chemistry, 135(4), 2350–2358.
  • Kim, J. H., Park, J. M., Kim, E.-K., Lee, J. O., Lee, S. K., Jung, J. H., … Kim, H. S. (2010). Curcumin stimulates glucose uptake through AMPK‐p38 MAPK pathways in L6 myotube cells. Journal of Cellular Physiology, 223(3), 771–778. doi:10.1002/jcp.22093
  • Kim, N., Lee, J. O., Lee, H. J., Lee, Y. W., Kim, H. I., Kim, S. J., … Kim, H. S. (2016). AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells. Journal of Endocrinology, 228(2), 105–114. doi:10.1530/JOE-15-0302
  • Koistinen, H. A., & Zierath, J. (2002). Regulation of glucose transport in human skeletal muscle. Annals of Medicine, 34(6), 410–418.
  • Koumanov, F., Jin, B., Yang, J., & Holman, G. D. (2005). Insulin signaling meets vesicle traffic of GLUT4 at a plasma- membrane-activated fusion step. Cell Metabolism, 2(3), 179–189. doi:10.1016/j.cmet.2005.08.007
  • Kovacic, S., Soltys, C.-L. M., Barr, A. J., Shiojima, I., Walsh, K., & Dyck, J. R. B. (2003). Akt activity negatively regulates phosphorylation ofAMPactivatedproteinkinaseintheheart. Journal of Biological Chemistry, 278(41), 39422–39427. doi:10.1074/jbc.M305371200
  • Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., … Tsuda, T. (2013). Blacksoybeanseedcoatextractameliorateshyperglycemiaand insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. doi:10.1021/jf401190y
  • Lee, W. J., Song, K.-H., Koh, E. H., Won, J. C., Kim, H. S., Park, H.-S., … Park, J.-Y. (2005). α-Lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochemical and Biophysical Research Communications, 332(3), 885–891. doi:10.1016/j.bbrc.2005.05.035
  • Lee, Y. S., Kim, W. S., Kim, K. H., Yoon, M. J., Cho, H. J., Shen, Y., … Kim, J. B. (2006). Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 55(8), 2256–2264. doi:10.2337/db06-0006
  • Liu, Q., Chen, L., Hu, L., et al. (2010). Small molecules from natural sources, targeting signaling pathways indiabetes.Biochimicaet BiophysicaActa(BBA)-Gene Regulatory Mechanisms, 1799(10), 854–865.
  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiplebiologicalactivitiesofcurcumin: Ashortreview. Life Sciences, 78(18), 2081–2087. doi:10.1016/j.lfs.2005.12.007
  • Meghana, K., Sanjeev, G., & Ramesh, B. (2007). Curcumin prevents streptozotocin-induced islet damage by scavengingfreeradicals:Aprophylacticandprotectiverole. European Journal of Pharmacology, 577(1–3), 183–191.
  • Mueckler, M. (1990). Family of glucose-transporter genes: Implications for glucose homeostasis and diabetes. Diabetes, 39(1), 6–11.
  • Pari, L., & Murugan, P. (2007). Antihyperlipidemiceffectofcurcuminandtetrahydrocurcumininexperimentaltype 2 diabetic rats. Renal Failure, 29(7), 881–889. doi:10.1080/08860220701540326
  • Park, C. E., Kim, M.-J., Lee, J. H., Min, B.-I., Bae, H., Choe, W., … Ha, J. (2007). Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Experimental & Molecular Medicine, 39(2), 222. doi:10.1038/emm.2007.25
  • Rashid, K., Chowdhury, S., Ghosh, S., & Sil, P. C. (2017). Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochemical Pharmacology, 143, 140–155. doi:10.1016/j.bcp.2017.07.009
  • Russell III, R. R., Bergeron, R., Shulman, G. I., & Young, L. H. (1999). Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. American Journal of Physiology-Heart and Circulatory Physiology, 277(2), H643–H649. doi:10.1152/ajpheart.1999.277.2.H643
  • Saltiel, A. R. (2001). New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell, 104(4), 517–529.
  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nature Protocols, 3(6), 1101. doi:10.1038/nprot.2008.73
  • Shao, W., Yu, Z., Chiang, Y., Yang, Y., Chai, T., Foltz, W., … Schneider-Stock, R. (2012). Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PloS One, 7(1), e28784. doi:10.1371/journal.pone.0028784
  • Smith, A., & Muscat, G. (2005). Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. International Journal of Biochemistry and Cell Biology, 37, 2047–2063. doi:10.1016/j.biocel.2005.03.002
  • Tortorella, L. L., & Pilch, P. F. (2002). Dexamethasone markedly induces glut4 expression in C2c12 Myocytes without concomitant formation of an intracellular, insulin responsive vesicular compartment. Diabetes, 51, A312.
  • Watson, R. T., & Pessin, J. E. (2001). Intracellular organization of insulin signaling and GLUT4 translocation. Recent Progress in Hormone Research, 56, 175–193.
  • Yamashita, Y., M., et al. (2012). Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle. Journal of Nutritional Science, May 31;1:e2.1.
  • Yamashita, Y., Wang, L., Nanba, F., Ito, C., Toda, T., Ashida, H., & Kanzaki, M. (2016). Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PLoS One, 11(9), e0161704. doi:10.1371/journal.pone.0161704
  • Zhang, Z., Li, Q., Liang, J., Dai, X. Q., Ding, Y., Wang, J. B., & Li, Y. (2010). Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phyto Medicine, 17(1), 14–18. doi:10.1016/j.phymed.2009.09.007