12,235
Views
33
CrossRef citations to date
0
Altmetric
Review Article

High Pressure Processing of Foods for Microbial and Mycotoxins Control: current trends and future prospects

ORCID Icon & | (Reviewing editor)
Article: 1622184 | Received 05 Apr 2019, Accepted 19 May 2019, Published online: 11 Jun 2019

References

  • Acar, J., Gökmen, V., & Taydas, E. E. (1998). The effects of processing technology on the patulin content of juice during commercial apple juice concentrate production. Zeitschrift Für Lebensmitteluntersuchung und-Forschung A, 207(4), 328–21.
  • Alpas, H., Kalchayanand, N., Bozoglu, F., Sikes, A., Dunne, C., & Ray, B. (1999). Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Applied and Environmental Microbiology, 65(9), 4248–4251.
  • Ananta, E., Heinz, V., Schlüter, O., & Knorr, D. (2001). Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science & Emerging Technologies, 2(4), 261–272. doi:10.1016/S1466-8564(01)00046-7
  • Andrés, V., Villanueva, M.-J., & Tenorio, M.-D. (2016). Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids, and mineral content of milk-and soy-smoothies. LWT-Food Science and Technology, 65, 98–105. doi:10.1016/j.lwt.2015.07.066
  • Avsaroglu, M., Bozoglu, F., Alpas, H., Largeteau, A., & Demazeau, G. (2015). Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research, 35(2), 214–222. doi:10.1080/08957959.2015.1027700
  • Aymerich, T., Picouet, P. A., & Monfort, J. M. (2008). Decontamination technologies for meat products. Meat Science, 78(1–2), 114–129. doi:10.1016/j.meatsci.2007.07.007
  • Balci, A. T., & Wilbey, R. A. (1999). High pressure processing of milk-the first 100 years in the development of a new technology. International Journal of Dairy Technology, 52(4), 149–155. doi:10.1111/idt.1999.52.issue-4
  • Barbosa-Cánovas, G., Pothakamury, U., Palou, E., & Swanson, B. (1998). Nonthermal preservation of foods. New York: Macel Dekker. Inc.
  • Bárcenas, M. E., Altamirano-Fortoul, R., & Rosell, C. M. (2010). Effect of high pressure processing on wheat dough and bread characteristics. LWT-Food Science and Technology, 43(1), 12–19. doi:10.1016/j.lwt.2009.06.019
  • Barug, D., Bhattnagar, D., Van Egmond, H. P., van der Kamp, J. W., Van Osenbruggen, W. A., & Visconti, A. (2006). The mycotoxin factbook. Wageningen, The Netherlands: Wageningen Academic Publishers.
  • Basak, S., Ramaswamy, H., & Piette, J. (2002). High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innovative Food Science & Emerging Technologies, 3(3), 223–231. doi:10.1016/S1466-8564(02)00008-5
  • Bilbao-Sáinz, C., Younce, F. L., Rasco, B., & Clark, S. (2009). Protease stability in bovine milk under combined thermal-high hydrostatic pressure treatment. Innovative Food Science & Emerging Technologies, 10(3), 314–320. doi:10.1016/j.ifset.2009.01.003
  • Bruna, D., Voldrich, M., Marek, M., & Kamarád, J. (1997). Effect of high pressure treatment on patulin content in apple concentrate. High Pressure Research in the Biosciences, 335–338.
  • Butz, P., Funtenberger, S., Haberditzl, T., & Tauscher, B. (1995). High pressure inactivation of Byssochlamys nivea Ascospores and other heat resistant moulds. LWT-Food Science and Technology, 29(5–6), 404–410. doi:10.1006/fstl.1996.0062
  • Butz, P., Ries, J., Traugott, U., Weber, H., & Ludwig, H. (1990). The high-pressure inactivation of bacteria and bacterial-spores. Pharmazeutische Industrie, 52(4), 487–491.
  • Carlez, A., Rosec, J.-P., Richard, N., & Cheftel, J.-C. (1993). High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. LWT-Food Science and Technology, 26(4), 357–363. doi:10.1006/fstl.1993.1071
  • Chai, C., Lee, J., Lee, Y., Na, S., & Park, J. (2014). A combination of TiO2–UV photocatalysis and high hydrostatic pressure to inactivate Bacillus cereus in freshly squeezed Angelica keiskei juice. LWT-Food Science and Technology, 55(1), 104–109. doi:10.1016/j.lwt.2013.08.015
  • Cheftel, J. C. (1995). Review: High-pressure, microbial inactivation and food preservation. Food Science and Technology International, 1(2–3), 75–90. doi:10.1177/108201329500100203
  • Clouston, J., & Wills, P. A. (1969). Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. Journal of Bacteriology, 97(2), 684–690.
  • CODEX. (2003). Maximum level for Patulin in apple juice and apple juice ingredients and other beverages. In Codex standard 235. Rotterdam: Joint FAO/WHO Food Standards Programme.
  • Crawford, Y. J., Murano, E. A., Olson, D. G., & Shenoy, K. (1996). Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast. Journal of Food Protection, 59(7), 711–715. doi:10.4315/0362-028X-59.7.711
  • Daryaei, H., & Balasubramaniam, V. (2012). Microbial decontamination of food by high pressure processing. In Microbial decontamination in the food industry (pp. 370–406). Woodhead Publishing.
  • De Souza Sant’Ana, A., Rosenthal, A., & de Massaguer, P. R. (2008). The fate of patulin in apple juice processing: A review. Food Research International, 41(5), 441–453. doi:10.1016/j.foodres.2008.03.001
  • Devatkal, S., Somerville, J., Thammakulkrajang, R., & Balasubramaniam, V. (2015). Microbiological efficacy of pressure assisted thermal processing and natural extracts against Bacillus amyloliquefaciens spores suspended in deionized water and beef broth. Food and Bioproducts Processing, 95, 183–191. doi:10.1016/j.fbp.2015.05.007
  • Drusch, S., & Ragab, W. (2003). Mycotoxins in fruits, fruit juices, and dried fruits. Journal of Food Protection, 66, 1514–1527. doi:10.4315/0362-028X-66.8.1514
  • EC. (2006). Commission regulation (EC) No 1881/2006 of 19 december 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal European Union, 364, 5–24.
  • Evelyn, M. E., & Silva, F. V. M. (2017). Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods. Journal of Food Engineering, 214, 90–96. doi:10.1016/j.jfoodeng.2017.06.027
  • Farr, D. (1990). High pressure technology in the food industry. Trends in Food Science & Technology, 1, 14–16. doi:10.1016/0924-2244(90)90004-I
  • FDA. (2004). Compliance policy guidance for fda staff. Sec. 510.150 Apple juice, apple juice concentrates, and apple juice products-Adulteration with patulin. In compliance policy guide. Silver Spring, MD, USA: U.S. Food and Drug Administration
  • Fornari, C., Maggi, A., Gola, S., Cassara, A., & Manachini, P. L. (1995). Inactivation of Bacillus endospores by high-pressure treatment. Industria Conserve, 70(3), 259–265.
  • Funes, G., & Resnik, S. (2009). Determination of patulin in solid and semisolid apple and pear products marketed in Argentina. Food Control, 20(3), 277–280. doi:10.1016/j.foodcont.2008.05.010
  • Galazka, V., & Ledward, D. (1995). Developments in high pressure food processing. Food Technology International Europe, 12, 123–125.
  • Gao, Y., Qiu, W., Wu, D., & Fu, Q. (2011). Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Applied Biochemistry and Biotechnology, 164(7), 1083–1095. doi:10.1007/s12010-011-9196-0
  • Garriga, M., Grebol, N., Aymerich, M., Monfort, J., & Hugas, M. (2004). Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science & Emerging Technologies, 5(4), 451–457. doi:10.1016/j.ifset.2004.07.001
  • Georget, E., Sevenich, R., Reineke, K., Mathys, A., Heinz, V., Callanan, M., … Knorr, D. (2015). Inactivation of microorganisms by high isostatic pressure processing in complex matrices: A review. Innovative Food Science & Emerging Technologies, 27, 1–14. doi:10.1016/j.ifset.2014.10.015
  • Gervilla, R., Capellas, M., Ferragut, V., & Guamis, B. (1997a). Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe’s milk. Journal of Food Protection, 60(1), 33–37. doi:10.4315/0362-028X-60.1.33
  • Gervilla, R., Felipe, X., Ferragut, V., & Guamis, B. (1997b). Effect of high hydrostatic pressure on Escherichia coli and Pseudomonas fluorescens strains in ovine milk. Journal of Dairy Science, 80(10), 2297–2303. doi:10.3168/jds.S0022-0302(97)76179-4
  • Gökmen, V., Artık, N., Acar, J., Kahraman, N., & Poyrazoğlu, E. (2001). Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice. European Food Research and Technology, 213(3), 194–199. doi:10.1007/s002170100354
  • Gould, G. (1973). Inactivation of spores in food by combined heat and hydrostatic pressure. Acta Aliment, 2, 377–383.
  • Gould, G. (2000). Strategies for food preservation. The Microbiological Safety and Quality of Food, 1, 19–35.
  • Gould, G., & Sale, A. (1970). Initiation of germination of bacterial spores by hydrostatic pressure. Microbiology, 60(3), 335–346.
  • Gould, G. W. (1995). The microbe as a high pressure target. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hasting (Eds.), High pressure processing of foods (pp. 27–35). Loughborough, Nottingham: University Press.
  • Gupta, R., & Balasubramaniam, V. (2012). High-pressure processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 109–133). Academic Press.
  • Hao, H., Zhou, T., Koutchma, T., Wu, F., & Warriner, K. (2016). High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control, 62, 237–242. doi:10.1016/j.foodcont.2015.10.042
  • Hartmann, C., & Delgado, A. (2004). Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. Journal of Biomechanics, 37(7), 977–987. doi:10.1016/j.jbiomech.2003.11.028
  • Hartmann, C., Mathmann, K., & Delgado, A. (2006). Mechanical stresses in cellular structures under high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 7(1–2), 1–12. doi:10.1016/j.ifset.2005.06.005
  • Hayakawa, I., Kanno, T., Yoshiyama, K., & Fujio, Y. (1994). Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. Journal of Food Science, 59(1), 164–167. doi:10.1111/jfds.1994.59.issue-1
  • Heinz, V., & Knorr, D. (1998). High pressure germination and inactivation kinetics of bacterial spores. Special Publication-Royal Society of Chemistry, 222, 435–441.
  • Heinz, V., & Knorr, D. (2002). Effects of high pressure on spores. In Ultra high pressure treatments of foods (pp. 77–113). Boston, MA: Springer.
  • Hite, B. H. (1899). The effect of pressure in the preservation of milk: A preliminary report. West Virginia Agricultural Experiment Station.
  • Hite, B. H. (1914). The effects of pressure on certain microorganisms encountered in the preservation of fruits and vegetables. Bull West Virginia University Agricultural Experiment Station, 146, 3–67.
  • Hogan, E., Kelly, A. L., & Sun, D.-W. (2005). High pressure processing of foods: An overview. InEmerging technologies for food processing (pp. 3–32). Academic Press.
  • Hoover, D. (1993). Pressure effects on biological systems. Food Technology (USA), 47(6), 150–155.
  • Hoover, D. G. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43, 99–107.
  • Janotová, L., Čížková, H., Pivoňka, J., & Voldřich, M. (2011). Effect of processing of apple puree on patulin content. Food Control, 22(6), 977–981. doi:10.1016/j.foodcont.2010.12.005
  • Ju, X.-R., Gao, Y.-L., Yao, M.-L., & Qian, Y. (2008). Response of Bacillus cereus spores to high hydrostatic pressure and moderate heat. LWT-Food Science and Technology, 41(10), 2104–2112. doi:10.1016/j.lwt.2007.11.011
  • Kadakal, C., & Nas, S. (2002). Effect of activated charcoal on patulin, fumaric acid and some other properties of apple juice. Food/Nahrung, 46(1), 31–33. doi:10.1002/1521-3803(20020101)46:1<31::AID-FOOD31>3.0.CO;2-D
  • Kadam, P., Jadhav, B., Salve, R., & Machewad, G. (2012). Review on the high pressure technology (HPT) for food preservation. Journal Food Process Technol, 3(1), 135.
  • Kalagatur, N. K., Kamasani, J. R., Mudili, V., Krishna, K., Chauhan, O. P., & Sreepathi, M. H. (2018). Effect of high pressure processing on growth and mycotoxin production of Fusarium graminearum in maize. Food Bioscience, 21, 53–59. doi:10.1016/j.fbio.2017.11.005
  • Kalchayanand, N., Sikes, A., Dunne, C., & Ray, B. (1998). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. Journal of Food Protection, 61(4), 425–431.
  • Kato, M., Hayashi, R., Tsuda, T., & Taniguchi, K. (2002). High pressure‐induced changes of biological membrane: Study on the membrane‐bound Na+/K+‐ATPase as a model system. European Journal of Biochemistry, 269(1), 110–118.
  • Kimura, K., Ida, M., Yosida, Y., Ohki, K., & Onomoto, M. (1996). Application of high pressure for sterilization of low acid food. In Progress in biotechnology (Vol. 13, pp. 429–432). Elsevier.
  • Knorr, D. (1995). Hydrostatic pressure treatment of food: Microbiology. In G. Gw (Ed.), New methods for food preservation (pp. 159–175). London: Blackie Academic and Professional.
  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203–235. doi:10.1146/annurev.food.102308.124129
  • Lai, C.-L., Fuh, Y.-M., & Shih, D. Y.-C. (2000). Detection of mycotoxin patulin in apple juice. Journal of Food and Drug Analysis, 8, 2.
  • Lechowich, R. (1993). Food safety implications of high hydrostatic pressure as a food processing method. Food Technology (USA), 47(6), 170–172.
  • Li, R., Wang, Y., Wang, S., & Liao, X. (2015). A comparative study of changes in microbiological quality and physicochemical properties of N 2-infused and N 2-degassed banana smoothies after high pressure processing. Food and Bioprocess Technology, 8(2), 333–342. doi:10.1007/s11947-014-1401-z
  • Lindroth, S., & von Wright, A. (1990). Detoxification of patulin by adduct formation with cysteine. Journal of Environmental Pathology, Toxicology and Oncology, 10(4–5), 254–259.
  • Linton, M., Patterson, M. F., & Patterson, M. (2000). High pressure processing of foods for microbiological safety and quality. Acta Microbiologica Et Immunologica Hungarica, 47(2–3), 175–182. doi:10.1556/AMicr.47.2000.2-3.3
  • Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22–30. doi:10.1016/j.ifset.2013.11.014
  • Lovett, J., & Peeler, J. (1973). Effect of pH on the thermal destruction kinetics of patulin in aqueous solution. Journal of Food Science, 38(6), 1094–1095. doi:10.1111/jfds.1973.38.issue-6
  • Ludwig, H., van Almsick, G., & Schreck, C. (2002). The effect of hydrostatic pressure on the survival of microorganisms. In Biological systems under extreme conditions (pp. 239–256). Heidelberg, Berlin: Springer.
  • Maggi, A., Gola, S., Rovere, P., Miglioli, L., Dall’Aglio, G., & Loenneborg, N. (1996). Effects of combined high pressure-temperature treatments on Clostridium sporogenes spores in liquid media. Industria Conserve, 71(1), 8–14.
  • Michiels, C., Bartlett, D. H., & Aertsen, A. (2008). High-pressure microbiology. ASM Press.
  • Morris, C., Brody, A. L., & Wicker, L. (2007). Non‐thermal food processing/preservation technologies: A review with packaging implications. Packaging Technology and Science: an International Journal, 20(4), 275–286. doi:10.1002/(ISSN)1099-1522
  • Moussa-Ayoub, T. E., Jäger, H., Knorr, D., El-Samahy, S. K., Kroh, L. W., & Rohn, S. (2017). Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Science and Technology, 79, 534–542. doi:10.1016/j.lwt.2016.10.061
  • Mukhopadhyay, S., Sokorai, K., Ukuku, D., Fan, X., & Juneja, V. (2017). Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree. Food Research International, 91, 55–62. doi:10.1016/j.foodres.2016.11.029
  • Murrell, W., & Wills, P. A. (1977). Initiation of Bacillus spore germination by hydrostatic pressure: Effect of temperature. Journal of Bacteriology, 129(3), 1272–1280.
  • Nakayama, A., Yano, Y., Kobayashi, S., Ishikawa, M., & Sakai, K. (1996). Comparison of pressure resistances of spores of six bacillus strains with their heat resistances. Applied and Environmental Microbiology, 62(10), 3897–3900.
  • O’Reilly, C. E., O’Connor, P. M., Kelly, A. L., Beresford, T. P., & Murphy, P. M. (2000). Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Applied and Environmental Microbiology, 66(11), 4890–4896. doi:10.1128/aem.66.11.4890-4896.2000
  • Ogawa, H., Fukuhisa, K., Kubo, Y., & Fukumoto, H. (1990). Pressure inactivation of yeasts, molds, and pectinesterase in Satsuma mandarin juice: Effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agricultural and Biological Chemistry, 54(5), 1219–1225.
  • Olsson, S. (1995). Production equipment for commercial use. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hasting (Eds.), High pressure processing of foods (pp. 167). Nottingham: Nottingham University Press.
  • Osumi, M., Sato, M., Kobori, H., Feng, Z. H., Ishizima, S. A., Hamada, K., & Shimada, S. (1996). Morphological effects of pressure stress on yeast. In R. Hayashi & C. Balny (Eds.), High pressure bioscience and biotechnology (Vol. 13, pp. 37–46). The Netherlands: Progress in biotechnology. Elsevier Science B.V.
  • Otero, L., Ramos, A., De Elvira, C., & Sanz, P. (2007). A model to design high-pressure processes towards an uniform temperature distribution. Journal of Food Engineering, 78(4), 1463–1470. doi:10.1016/j.jfoodeng.2006.01.020
  • Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D., Papafragkou, E., & Setlow, P. (2002). Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Applied and Environmental Microbiology, 68, 3172–3175. doi:10.1128/aem.68.6.3172-3175.2002
  • Palou, E., Lopez-Malo, A., Barbosa-Canovas, G., Welti-Chanes, J., & Swanson, B. (1997). Combined effect of high hydrostatic pressure and water activity on Zygosaccharomyces bailii inhibition. Letters in Applied Microbiology, 24, 417–420.
  • Pandya, Y., Jewett, F. F., Jr, & Hoover, D. G. (1995). Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts. Journal of Food Protection, 58(3), 301–304. doi:10.4315/0362-028X-58.3.301
  • Parish, M. E. (1998). High Pressure Inactivation of Saccharomyces Cerevisiae, Endogenous Microflora and Pectin methylesterase in Orange Juice 1. Journal of Food Safety, 18(1), 57–65. doi:10.1111/jfs.1998.18.issue-1
  • Park, S. W., Sohn, K. H., Shin, J. H., & Lee, H. J. (2001). High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. International Journal of Food Science & Technology, 36(7), 775–781. doi:10.1046/j.1365-2621.2001.00518.x
  • Patterson, M. (2005). Microbiology of pressure‐treated foods. Journal of Applied Microbiology, 98(6), 1400–1409. doi:10.1111/j.1365-2672.2005.02564.x
  • Patterson, M. F. (1999). High-pressure treatment of foods. In R. K. Robinson, C. A. Batt, & P. D. Patel (Eds.), Encyclopedia of food microbiology (pp. 1051–1065). New York: Academic Press.
  • Patterson, M. F., & Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. Journal of Food Protection, 61(4), 432–436.
  • Patterson, M. F., Quinn, M., Simpson, R., & Gilmour, A. (1995). Effect of high pressure on vegetable pathogens. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hasting (Eds.), High pressure processing of foods (pp. 47–63). Loughborough: Nottingham University Press.
  • Pauling, L. (1964). College chemistry: An introductory textbook of general chemistry. New York, NY: WH Freeman and Company.
  • Perera, N., Gamage, T., Wakeling, L., Gamlath, G., & Versteeg, C. (2010). Colour and texture of apples high pressure processed in pineapple juice. Innovative Food Science & Emerging Technologies, 11(1), 39–46. doi:10.1016/j.ifset.2009.08.003
  • Ponce, E., Pla, R., Capellas, M., Guamis, B., & Mor-Mur, M. (1998a). Inactivation of Escherichia coli inoculated in liquid whole egg by high hydrostatic pressure. Food Microbiology, 15(3), 265–272. doi:10.1006/fmic.1997.0164
  • Ponce, E., Pla, R., Mor-Mur, M., Gervilla, R., & Guamis, B. (1998b). Inactivation of Listeria innocua inoculated in liquid whole egg by high hydrostatic pressure. Journal of Food Protection, 61(1), 119–122. doi:10.4315/0362-028X-61.1.119
  • Rajan, S., Pandrangi, S., Balasubramaniam, V., & Yousef, A. E. (2006). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT-Food Science and Technology, 39(8), 844–851. doi:10.1016/j.lwt.2005.06.008
  • Ramaswamy, R., Ahn, J., Balasubramaniam, V., & Yousef, A. (2013). Food safety engineering. In Myer Kutz (Ed.), Handbook of farm, dairy and food machinery engineering (pp. 43–66). Ohio State University.
  • Raso, J., Barbosa-Canovas, G., & Swanson, B. (1998a). Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus. Journal of Applied Microbiology, 85, 17–24. doi:10.1046/j.1365-2672.1998.00460.x
  • Raso, J., Calderón, M. L., Góngora, M., Barbosa‐Cánovas, G. V., & Swanson, B. G. (1998b). Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. Journal of Food Science, 63(6), 1042–1044. doi:10.1111/j.1365-2621.1998.tb15850.x
  • Rastogi, N., Raghavarao, K., Balasubramaniam, V., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69–112. doi:10.1080/10408390600626420
  • Reddy, N., Solomon, H., Fingerhut, G., Rhodehamel, E., Balasubramaniam, V., & Palaniappan, S. (1999). Inactivation of Clostridium botulinum type E spores by high pressure processing. Journal of Food Safety, 19(4), 277–288. doi:10.1111/jfs.1999.19.issue-4
  • Rendueles, E., Omer, M., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Science and Technology, 44(5), 1251–1260. doi:10.1016/j.lwt.2010.11.001
  • Ritz, M., Tholozan, J., Federighi, M., & Pilet, M. (2001). Morphological and physiological characterization ofListeria monocytogenes subjected to high hydrostatic pressure. Applied and Environmental Microbiology, 67(5), 2240–2247. doi:10.1128/AEM.67.5.2240-2247.2001
  • Sale, A., Gould, G., & Hamilton, W. (1970). Inactivation of bacterial spores by hydrostatic pressure. Microbiology, 60(3), 323–334.
  • Sasagawa, A., Yamazaki, A., Kobayashi, A., Hoshino, J., Ohshima, T., Sato, M., … Yamada, A. (2006). Inactivation of Bacillus subtilis spores by a combination of hydrostatic high-pressure and pulsed electric field treatments. The Review of High Pressure Science and Technology, 16(1), 45–53. doi:10.4131/jshpreview.16.45
  • Schebb, N. H., Faber, H., Maul, R., Heus, F., Kool, J., Irth, H., & Karst, U. (2009). Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Analytical and Bioanalytical Chemistry, 394(5), 1361–1373. doi:10.1007/s00216-009-2765-1
  • Shahbaz, H. M., Yoo, S., Seo, B., Ghafoor, K., Kim, J. U., Lee, D.-U., & Park, J. (2016). Combination of TiO 2-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology, 9(1), 182–190. doi:10.1007/s11947-015-1614-9
  • Shao, Y., Zhu, S., Ramaswamy, H., & Marcotte, M. (2010). Compression heating and temperature control for high-pressure destruction of bacterial spores: An experimental method for kinetics evaluation. Food and Bioprocess Technology, 3(1), 71. doi:10.1007/s11947-008-0057-y
  • Shigehisa, T., Ohmori, T., Saito, A., Taji, S., & Hayashi, R. (1991). Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. International Journal of Food Microbiology, 12(2–3), 207–215.
  • Silva, F. V. (2015). High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70° C. Journal of Food Engineering, 165, 141–148. doi:10.1016/j.jfoodeng.2015.06.017
  • Simpson, R., & Gilmour, A. (1997). The resistance of Listeria monocytogenes to high hydrostatic pressure in foods. Food Microbiology, 14(6), 567–573. doi:10.1006/fmic.1997.0117
  • Smelt, J. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, 9(4), 152–158. doi:10.1016/S0924-2244(98)00030-2
  • Spadaro, D., Ciavorella, A., Frati, S., Garibaldi, A., & Gullino, M. (2007). Incidence and level of patulin contamination in pure and mixed apple juices marketed in Italy. Food Control, 18(9), 1098–1102. doi:10.1016/j.foodcont.2006.07.007
  • Ştefãnoiu, A., Tãnase, E. E., Mitelut, A. C., & Popa, M. E. (2015). Unconventional antimicrobial treatments for food safety and preservation. Scientific Bulletin Series F Biotechnologies, 12, 324–336.
  • Stoev, S. D. (2016). Food security and foodborne mycotoxicoses, risk assessment, preventive measures, and underestimated hazard of masked mycotoxins or joint mycotoxin interaction. Food Toxicology, 9, 169–199.
  • Tao, Y., Sun, D.-W., Hogan, E., & Kelly, A. L. (2014). High-pressure processing of foods: An overview. In Da-Wen Sun (Ed.), Emerging technologies for food processing (pp. 3–24). Academic Press.
  • Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: High-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24–63. doi:10.1080/10408398.2011.566946
  • Ting, E. & Marshall, R. (2002). Production issues related to UHP food. In Jorge Welti-Chanes, Gustavo V. Barbosa-Cánovas, & Jose Miguel Aguilera (Eds.), Engineering and food for the 21st century. CRC Press. 722–733.
  • Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423. doi:10.1016/j.ijfoodmicro.2011.02.019
  • Tokuşoğlu, Ö., Alpas, H., & Bozoğlu, F. (2010). High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science & Emerging Technologies, 11(2), 250–258. doi:10.1016/j.ifset.2009.11.005
  • Vercammen, A., Vivijs, B., Lurquin, I., & Michiels, C. W. (2012). Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology, 152(3), 162–167. doi:10.1016/j.ijfoodmicro.2011.02.019
  • Vidal, A., Sanchis, V., Ramos, A. J., & Marin, S. (2016). The fate of deoxynivalenol through wheat processing to food products. Current Opinion in Food Science, 11, 34–39. doi:10.1016/j.cofs.2016.09.001
  • WHO. (1995). Evaluation of certain food additives and contaminants. Technical Report Series, 859, 36–38.
  • Wilson, D. R., Dabrowski, L., Stringer, S., Moezelaar, R., & Brocklehurst, T. F. (2008). High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends in Food Science & Technology, 19(6), 289–299. doi:10.1016/j.tifs.2008.01.005
  • Wimalaratne, S., & Farid, M. (2008). Pressure assisted thermal sterilization. Food and Bioproducts Processing, 86(4), 312–316. doi:10.1016/j.fbp.2007.08.001
  • Wuytack, E. Y., Boven, S., & Michiels, C. W. (1998). Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology, 64(9), 3220–3224.
  • Wuytack, E. Y., Soons, J., Poschet, F., & Michiels, C. W. (2000). Comparative study of pressure-and nutrient-induced germination of Bacillus subtilis spores. Applied and Environmental Microbiology, 66(1), 257–261. doi:10.1128/aem.66.1.257-261.2000
  • Zhou, H., George, S., Hay, C., Lee, J., Qian, H., & Sun, X. (2017). Individual and combined effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines. Food and Chemical Toxicology, 103, 18–27. doi:10.1016/j.fct.2017.02.017