13,671
Views
72
CrossRef citations to date
0
Altmetric
Review Article

The effects of GABA in plants

, & | (Reviewing editor)
Article: 1670553 | Received 22 Jun 2019, Accepted 17 Sep 2019, Published online: 29 Sep 2019

References

  • Aghdam, M. S., Farhang, R., & Fatemeh, K. (2015). Maintaining the postharvest nutritional quality of peach fruits by γ-aminobutyric acid. Iranian Journal of Plant Physiology, 5, 1457–12.
  • Aghdam, M. S., Naderi, R., Jannatizadeh, A., Babalar, M., & Faradonbe, M. Z. (2016). Impact of exogenous GABA treatments on endogenous GABA metabolism in Anthurium cut flowers in response to postharvest chilling temperature. Plant Physiology and Biochemistry, 106, 11–15. doi:10.1016/j.plaphy.2016.04.045
  • Aghdam, M. S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M. A. A., & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of Anthurium cut flowers by gamma-aminobutyric acid (GABA) treatments. Scientia Horticultura, 198, 52–60. doi:10.1016/j.scienta.2015.11.019
  • Aghdam, M. S., Naderi, R., Sarchesmeh, M. A. A., & Babalar, M. (2015). Amelioration of postharvest chilling injury in Anthurium cut flowers by gamma-aminobutyric acid (GABA) treatments. Postharvest Biology and Technology, 110, 70–76. doi:10.1016/j.postharvbio.2015.06.020
  • Ali, M. M., Ashrafuzzaman, M., Ismail, M. R., Shahidullah, S. M., & Prodhan, A. K. M. A. (2010). Influence of foliar applied GABA on growth and yield contributing characters of White Gourd (Benincasa hispida). International Journal of Agriculture and Biology, 12, 373–376.
  • Allan, W. L., Simpson, J. P., Clark, S. M., & Shelp, B. J. (2008). Gamma-hydroxybutyrate accumulation in Arabodopsis and tobacco plants is a general response to abiotic stress: Puatative regulation by redox balance and gloxylate reductase isoforms. Journal of Experimental Botany, 59, 2555–2564. doi:10.1093/jxb/ern122
  • Alqarawi, A. A., Hashem, A., Abd_Allah, E. F., Al-Huqal, A. A., Alshahrani, T. S., Alshalawi, S. R., & Egamberdieva, D. (2016). Protective role of γ-aminobutyric acid on Cassia italica Mill under salt stress. Legume Research, 39, 396–404.
  • Al-Quraan, N. A., & Al-Omari, H. A. (2012). GABA accumulation and oxidative damage responses to salt, osmotic and H2O2 treatments in two lentil (Lens culinaris Medik) accessions. Plant Biosystems, 151, 148–157.
  • Al-Quraan, N. A., Sartawe, F. A., & Qaryout, M. M. (2013). Characterization of gamma-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. Journal of Plant Physiology, 170, 1003–1009. doi:10.1016/j.jplph.2013.02.010
  • Ansari, M. I., Hasan, S., & Jalil, S. U. (2014). Leaf senescence and GABA shunt. Bioinformation, 10, 734–736. doi:10.6026/97320630010734
  • Araujo, W. L., Ishizaki, K., Nunes-Nesi, A., Larson, T. R., Tohge, T., & Krahnert, I. (2010). Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. The Plant Cell, 22, 1549–1563. doi:10.1105/tpc.110.075630
  • Araujo, W. L., Nunes-Nesri, A., Trenkamp, S., Bunik, V. I., & Fernie, A. R. (2008). Inhibition of 2-oxoglutarate dehydrogenase in potato tubers suggests the enzyme is linked to respiration and confirms its importance in nitrogen assimilation. Plant Physiology, 148, 1782–1796. doi:10.1104/pp.108.126219
  • Bai, Q., Yang, R., Zhang, L., & Gu, Z. (2013). Salt stress induces accumulation of γ-aminobutyric acid in germinated Foxtail Millet (Setaria italica L.). Cereal Chemistry, 90, 145–149. doi:10.1094/CCHEM-06-12-0071-R
  • Bao, H., & Li, Y. (2015). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway. Plant Cell and Environment, 38, 600–613. doi:10.1111/pce.12419
  • Barbosa, J. M., Singh, N. K., Cherry, J. H., & Locy, R. D. (2010). Nitrate uptake and utilization is modulated by exogenous γ-amino-butyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry, 48, 443–450. doi:10.1016/j.plaphy.2010.01.020
  • Beuve, N., Rispali, N., Laine, P., Cliquet, J. B., Ourry, A., & Le Deunff, E. (2004). Putative role of γ-aminobutyric acid (GABA) as a long distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environment, 27, 1035–1046. doi:10.1111/j.1365-3040.2004.01208.x
  • Bouche, N., Fait, A., Bouchez, D., Møller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the γ-amino-butyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 100, 6843–6848. doi:10.1073/pnas.1037532100
  • Bouche, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9, 110–115. doi:10.1016/j.tplants.2004.01.006
  • Bown, A. W., Hall, D. E., & MacGregor, K. B. (2002). Insect footsteps on leaves stimulate the accumulation of γ-amino-butyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiology, 129, 1430–1434. doi:10.1104/pp.006114
  • Bown, A. W., MacGregor, K. B., & Shelp, B. J. (2006). Υ-aminobutyrate: Defense against invertebrate pests? Trends in Plant Science, 11, 424–427. doi:10.1016/j.tplants.2006.07.002
  • Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not just a metabolite. Trends in Plant Science, 21, 811–813. doi:10.1016/j.tplants.2016.08.001
  • Carillo, P. (2018). GABA Shunt in Durum Wheat. Frontiers in Plant Science, 9, 100. doi:10.3389/fpls.2018.00100
  • Carrol, A. D., Fox, G. G., Laurie, S., Philipps, R., Ratcliffe, R. G., & Stewart, G. R. (1994). Ammonium assimilation and the role of γ –Aminobutyric acid in pH homeostasis in carrot suspension cells. Plant Physiology, 106, 513–520. doi:10.1104/pp.106.2.513
  • Cekic, F. Ö. (2018). Exogenous GABA stimulates endogenous GABA and phenolic acid contents in tomato plants under salt stress. Celal Bayar University Journal of Science, 14, 61–64.
  • El-kereamy, A., Bi, Y.-M., Ranathunge, K., Beatty, P. H., Good, A. G., & Rothstein, S. J. (2012). The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PloS One, 7(12). doi:10.1371/journal.pone.0052030
  • Fait, A., Fromm, H., Walter, D., Galili, G., & Fernie, A. R. (2008). Highway or byway: The metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14–19. doi:10.1016/j.tplants.2007.10.005
  • Fan, L., Wu, X., Tian, Z., Jia, K., & Gao, H. (2015). Comparative proteomic analysis of γ-aminobutyric acid responses in hypoxia-treated and untreated melon roots. Phytochemistry, 116, 28–37. doi:10.1016/j.phytochem.2015.02.023
  • Fu, D., Sun, Y., Yu, C., Zheng, X., Yu, T., & Lu, H. (2017). Comparison of the effects of three types of aminobutyric acids on the control of Penicillium expansum infection in pear fruit. Journal of the Science of Food and Agriculture, 97, 1497–1501. doi:10.1002/jsfa.7891
  • Gao, H. B., & Guo, S. R. (2004). Effects of exogenous γ-aminobutyric acid on antioxidant enzyme activity and reactive oxygen content in muskmelon seedlings under nutrient solution hypoxia stress. Journal of Plant Physiology and Molecular Biology, 30, 651–659.
  • Gilliham, M., & Tyerman, S. D. (2016). Linking metabolism to membrane signaling: The GABA-malate connection. Trends in Plant Science, 21, 295–301. doi:10.1016/j.tplants.2015.11.011
  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., von Korff, M., Varshney, R.K., Graner, A., & Valkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Exp. Botany, 60, 3531–3544.
  • Hu, X., Xu, Z., Xu, W., Li, J., & Zhou, Y. (2015). Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)(2) stress. Plant Physiology and Biochemistry, 92, 1–10. doi:10.1016/j.plaphy.2015.04.006
  • Jalil, S. U., Ahmad, I., & Ansari, M. I. (2016). Phenotypic characterization of GABA-Transaminase mutants of Arabidopsis thaliana. Advances in Life Sciences, 5, 10005–10008.
  • Jalil, S. U., Ahmad, I., & Ansari, M. I. (2017). Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana. Current Plant Biology, 9–10, 11–22. doi:10.1016/j.cpb.2017.02.001
  • Jia, Y., Zou, D., Wang, J., Sha, H., Liu, H., Inayat, M.A., Sun, J., Zheng, H., Xia, N., & Zhao, H. (2017). Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage. Journal of Plant Growth Regulation, 36, 240–253. doi:10.1007/s00344-016-9634-x
  • Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric Acid (GABA) and plant responses to stress. Critical Reviews in Plant Science, 19, 479–509. doi:10.1080/07352680091139277
  • Koppitz, H., Dewender, M., Oostendorp, W., & Schmieder, K. (2004). Amino acids as indicators of physiological stress in common reed Phragmites australis affected by an extreme flood. Aquatic Botany, 79, 277–294. doi:10.1016/j.aquabot.2004.05.002
  • Li, J., Zhou, X., Wei, B., Cheng, S., Zhou, Q., & Ji, S. (2019). GABA application improves the mitochondrial antioxidant sytem and reduces peel browning in “Nanguo” pears after removal from cold storage. Food Chemistry, 297.
  • Li, J. R., Tian, Z., X-L., W. U., GONG, -B.-B., & Gao, H.-B. (2016). Regulation of γ-aminobutyric acid on growth and nitrate metabolism of pak-choi treated with high nitrogen application. Acta Horticulturae Sinica, 43, 2182–2192.
  • Li, M. F., Guo, S. J., Yang, X. H., Meng, Q. W., & Wei, X. J. (2016). Exogenous γ-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biologia Plantarum, 60, 123–131. doi:10.1007/s10535-015-0559-1
  • Li, W., Lin, J., Ashraf, U., Li, G., Li, Y., Lu, W., Gao, L., Han, F., & Hu, J. (2016). Exogenous γ-aminobutyric Acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Frontiers in Plant Science, 7, 1–13.
  • Li, Y., Fan, Y., Jiao, Y., Ma, Y., Zhang, Z., Yue, H., Wang, L., & Jiao, Y. (2017). Effects of exogenous γ-Aminobutyric Acid (GABA) on photosynthesis and antioxidant system in Pepper (Capsicum annuum L.) Seedlings under low light stress. Journal of Plant Growth Regulation, 36, 436–449. doi:10.1007/s00344-016-9652-8
  • Li, Z., Peng, Y., & Huang, B. (2016). Physiological effects of γ-aminobutyric acid application on improving heat and drought tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science, 141, 76–84. doi:10.21273/JASHS.141.1.76
  • Li, Z., Yu, J., Peng, Y., & Huang, B. (2016). Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports, 6, 1–16.
  • Ling, Y., Chen, T., Jing, Y., Fan, L., & Wan, Y. (2013). Υ-aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta, 238, 831–843. doi:10.1007/s00425-013-1938-5
  • Liu, C., Zhao, L., & Yu, G. (2011). The dominant glutamic acid metabolic flux to produce γ-aminobutyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. Journal of Integrative Plant Biology, 53, 608–618. doi:10.1111/j.1744-7909.2011.01049.x
  • Lum, G. B., Shelp, B. J., DeEll, J. R., & Bozzo, G. G. (2016). Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Science, 245, 143–152. doi:10.1016/j.plantsci.2016.02.005
  • Ma, X., Zhu, C., Yang, N., Gan, L., & Xla, K. (2016). Υ-aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. Physiologia Plantarum, 158, 389–401. doi:10.1111/ppl.12473
  • Mahmud, J. A., Hasanuzzaman, M., Nahar, K., Rahman, A., Hossain, M. S., & Fujita, M. (2017). Υ -aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology, 26, 675–690. doi:10.1007/s10646-017-1800-9
  • Malabarba, J., Reichelt, M., Pasqualil, G., & Mithöfer, A. (2018). Tendril coiling in Grapevine: Jasmonates and a new role for GABA? Journal of Plant Growth Regulation, 37.
  • Malekzadeh, P., Khara, J., & Heydari, R. (2014). Alleviating effects of exogenous γ-aminobutyric acid on tomato seedlings under chilling stress. Physiology and Molecular Biology of Plants, 20, 133–137. doi:10.1007/s12298-013-0203-5
  • Malekzadeh, P., Kosravi-Nejad, F., & Hatamnia, A. A. (2017). Impact of postharvest exogenous γ-aminobutyric acid treatment on cucumber fruits in response to chilling tolerance. Physiology and Molecular Biology of Plants, 23, 827–836. doi:10.1007/s12298-017-0475-2
  • Michaeli, S., Fait, A., Lagor, K., Nunes-Nesi, A., Grillich, N., Yellin, A.,Bar, D., Khan, M., Fermie, A.R., Turani, F.J. & Fromm, H. (2011). A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. The Plant Journal : for Cell and Molecular Biology, 67, 485–498. doi:10.1111/j.1365-313X.2011.04612.x
  • Michaeli, S., & Fromm, H. (2015). Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined? Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00419
  • Nagao, M., Matsui, K., & Uemura, M. (2008). Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell and Environment, 31, 872–885. doi:10.1111/j.1365-3040.2008.01804.x
  • Nayyar, H., Kaur, R., Kaur, S., & Singh, R. (2014). Υ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation, 33, 408–419. doi:10.1007/s00344-013-9389-6
  • Palma, F., Carvajal, F., Jiménez-Muñoz, R., Pulido, A., Jamilena, M., & Garrido, D. (2019). Exogenous y-aminobutyric acid treatment improves cold tolerance of zucchini fruit during postharvest storage. Plant Physiol and Biochemistry, 136, 188–195. doi:10.1016/j.plaphy.2019.01.023
  • Podlesakova, K., Ugena, L., Spichal, L., Dolezal, K., & De Diego, N. (2019). Phytohormones and ployamines regulate plant stress respoonses by altering GABA pathways. New Biotechnology, 48, 53–65. doi:10.1016/j.nbt.2018.07.003
  • Ramesh, S. A., Tyerman, S. D., Xu, B., Bose, J., Kaur, S., & Conn, V. (2015). GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications, 6, 7879. doi:10.1038/ncomms8879
  • Ramos-Ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food & Agriculture, 4, 1534323.
  • Ramputh, A. I., & Bown, A. W. (1996). Rapid γ-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf roller larvae. Plant Physiology, 111, 1349–1352. doi:10.1104/pp.111.4.1349
  • Renault, H., Deleu, C., Palanivelu, R., Updegraff, E. P., Yu, A., Renou, J.-P., … Deleu, C. (2011). GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell-wall-related proteins in Arabidopsis thaliana. Plant Cell Physiology, 52, 894–908. doi:10.1093/pcp/pcr041
  • Renault, H., El Amrani, A., Berger, A., Mouille, G., Soubigou-Taconnat, L., & Bouchereau, A. (2013). Υ-aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant, Cell and Environment, 36, 1009–1018. doi:10.1111/pce.12033
  • Scholz, S. S., Malabarba, J., Reichelt, M., Heyer, M., Ludewig, F., & Mithöfer, A. (2017). Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00388
  • Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F., & Mithöfer, A. (2015). Insect herbivory-elicited GABA accumulation in plants in wound-induced, direct, systemic and jasmonate-dependent defense response. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01128
  • Seifi, H. S., Curvers, K., Vleesschauwer, D. D., Delaere, I., Azis, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytologist, 199, 490–504. doi:10.1111/nph.12283
  • Shang, H., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Effect of exogenous gamma-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruits after long-term cold storage. Journal of Agricultural and Food Chemistry, 59, 1264–1268. doi:10.1021/jf104424z
  • Shelp, B. J., Bown, A. W., & Zarei, A. (2017). Υ-aminobutyrate (GABA): A metabolite and signal with practical significance. Botany, 95, 1015–1032. doi:10.1139/cjb-2017-0135
  • Sheng, L., Shen, D., Luo, Y., Sun, X., & Cheng, Y. (2017). Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 216, 138–145. doi:10.1016/j.foodchem.2016.08.024
  • Snedden, W. A., Arazi, T., Fromm, H., & Shelp, B. J. (1995). Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiology, 108, 543–549. doi:10.1104/pp.108.2.543
  • Song, H., Xu, X., Wang, H., Wang, H., & Tao, Y. (2010). Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminum and proton stresses on barley seedlings. Journal of the Science of Food and Agriculture, 90, 1410–1416. doi:10.1002/jsfa.3951
  • Takahashi, H., Matsumura, H., Kawai-Yamada, M., & Uchimiya, H. (2008). The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells. Plant Signaling & Behavior, 3, 945–953. doi:10.4161/psb.6112
  • Vijayakumari, K., & Puthur, J. T. (2016). Υ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Journal of Plant Growth Regulation, 78, 57–67. doi:10.1007/s10725-015-0074-6
  • Wang, C.-Y., Li, J. R., Xia, Q. P., Wu, X. L., & Gao, H. B. (2014). Influence of exogenous γ-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress. The Journal of Applied Ecology, 25, 2011–2018.
  • Wang, Y., Gu, W., Meng, Y., Xie, T., Li, L., & Li, J. (2017). Υ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Scientific Reports, 7, 1–13.
  • Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., & Du, R. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132–137. doi:10.1016/j.scienta.2014.01.022
  • Xia, Q. P., Goa, H.-B., & Li, J.-R. (2011). Effects of γ–Aminobutyric acid on the photosynthesis and chlorophyll fluorescence parameters of muskmelon seedlings under hypoxia stress. Chinese Journal of Applied Ecology, 22, 999–1006.
  • Yang, A., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Υ-aminobutyric acid treatment reduces chilling injury and activates the defense response of peach fruit. Food Chemistry, 129, 1619–1622. doi:10.1016/j.foodchem.2011.06.018
  • Yang, J., Sun, C., Zhang, Y., Fu, D., Zheng, X., & Yu, T. (2017). Induced resistance in tomato fruit by γ-aminobutyric acid for the control of Alternaria rot caused by Alternaria alternata. Food Chemistry, 22, 1014–1020. doi:10.1016/j.foodchem.2016.11.061
  • Yang, R., Yin, Y., & Gu, Z. (2015). Polyamine degradation pathway regulating growth and GABA accumulation in germinating Fava bean under hypoxia-NaCl stress. Journal of Agricultural Science and Technology, 17, 311–320.
  • Yu, C., Zeng, L., Sheng, K., Chen, F., & Yu, T. (2014). Υ-aminobutyric acid induces resistance against Penicillium expansum by priming of defense responses in pear fruit. Food Chemistry, 159, 29–37. doi:10.1016/j.foodchem.2014.03.011
  • Yu, G.-H., Zou, J., Feng, J., Peng, X. B., Wu, J. Y., Palanivelu, R., Sun, M. X. (2014). Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. Journal of Experimental Botany, 65, 3235–3238. doi:10.1093/jxb/eru171
  • Ziogas, V., Tanou, G., Belghazi, M., & Diamantidis, G. (2017). Characterization of β-amino- and γ-aminobutyric acid-induced citrus seeds germination under salinity using nanoLC-MS/MS analysis. Plant Cell Reports, 36, 787–789. doi:10.1007/s00299-016-2063-2