2,121
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of particle size of chia seeds on bioaccessibility of phenolic compounds during in vitro digestion

ORCID Icon, & | (Reviewing editor)
Article: 1694775 | Received 29 Aug 2019, Accepted 12 Nov 2019, Published online: 05 Dec 2019

References

  • AACC. (2000). Approved methods of the american association of cereal chemist: The Association.St. Paul, Minnesota.
  • Alfredo, V. O., Gabriel, R. R., Luis, C. G., & David, B. A. (2009). Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT - Food Science and Technology, 42, 168–173. doi:10.1016/j.lwt.2008.05.012
  • Alimentarius, C. (1999). STANDARD FOR NAMED VEGETABLE OILS CODEX STAN 210-1999 Adopted. Journal of Chemical Information and Modeling. Rome.
  • Alminger, M., Aura, A.-M., Bohn, T., Dufour, C., El, S. N., Gomes, A., … Santos, C. N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13, 413–436. doi:10.1111/1541-4337.12081
  • Amato, M., Caruso, M. C., Guzzo, F., Galgano, F., Commisso, M., Bochicchio, R., … Favati, F. (2015). Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. European Food Research and Technology, 241, 615–625. doi:10.1007/s00217-015-2488-9
  • Ayerza, R. (2010). Effects of seed color and growing locations on fatty acid content and composition of two chia (Salvia hispanica L.) genotypes. JAOCS, Journal of the American Oil Chemists’ Society, 87, 1161–1165. doi:10.1007/s11746-010-1597-7
  • Ayerza, R., & Coates, W. (2004). Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Tropical Science, 44, 131–13. doi:10.1002/(ISSN)1556-9179
  • Ayerza,, & Coates, W. (2011). Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Industrial Crops and Products, 34(2), 1366–1371. doi: 10.1016/J.Indcrop.2010.12.007
  • Brewer, L. R., Kubola, J., Siriamornpun, S., Herald, T. J., & Shi, Y. C. (2014). Wheat bran particle size influence on phytochemical extractability and antioxidant properties. In Brewer, L. R., J. Kubola, S. Siriamornpun, T. J. Herald, & Y. C. Shi, (Eds), Food chemistry, 152,483–90. doi: 10.1016/j.foodchem.2013.11.128
  • Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45, 94–102. doi:10.1016/j.lwt.2011.07.012
  • Celep, E., Charehsaz, M., Akyüz, S., Acar, E. T., & Yesilada, E. (2015). Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Research International, 78, 209–215. doi:10.1016/j.foodres.2015.10.009
  • Dąbrowski, G., Konopka, I., Czaplicki, S., & Tańska, M. (2017). Composition and oxidative stability of oil from Salvia hispanica L. seeds in relation to extraction method. European Journal of Lipid Science and Technology, 119, 1600209. doi:10.1002/ejlt.v119.5
  • Decker, E. A., Alamed, J., & Castro, I. A. (2010). Interaction between polar components and the degree of unsaturation of fatty acids on the oxidative stability of emulsions. JAOCS, Journal of the American Oil Chemists’ Society, 87, 771–780. doi:10.1007/s11746-010-1556-3
  • Espinosa, R. R., Inchingolo, R., Alencar, S. M., Rodriguez-Estrada, M. T., & Castro, I. A. (2015). Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters. Food Chemistry, 182, 95–104. doi:10.1016/j.foodchem.2015.02.130
  • Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29, 751–760. doi:10.1016/j.nutres.2009.09.016
  • Galanakis, C. M. (2017). Introduction. Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques.
  • Hawrysh, Z. J., Shand, P. J., Tokarska, B., & Lin, C. (1988). Effects of tertiary butylhydroquinone on the stability of canola oil. I. Accelerated storage. Canadian Institute of Food Science and Technology Journal, 21, 549–554. doi:10.1016/S0315-5463(88)71037-8
  • Heaney, R. P. (2001). Factors influencing the measurement of bioavailability, taking calcium as a model. The Journal of Nutrition, 131, 1344S-1348S. doi:10.1093/jn/131.4.1344S
  • Ixtaina, V. Y., Nolasco, S. M., & Tomás, M. C. (2012). Oxidative stability of chia (Salvia hispanica L.) seed oil: Effect of antioxidants and storage conditions. JAOCS, Journal of the American Oil Chemists’ Society, 89, 1077–1090. doi:10.1007/s11746-011-1990-x
  • Kim, K. H., Tsao, R., Yang, R., & Cui, S. W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466–473.
  • Kozłowska, M., Gruczyńska, E., Ścibisz, I., & Rudzińska, M. (2016). Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chemistry, 213, 450–456. doi:10.1016/j.foodchem.2016.06.102
  • Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of total phenolic content using the folin-C assay: Single-Laboratory Validation, First Action 2017.13. Journal of AOAC International, 101, 1466–1472. doi:10.5740/jaoacint.18-0031
  • Labanca, R. A., Svelander, C., Eliasson, L., Araújo, R. L. B., Ahrné, L., & Alminger, M. (2017). Supercritical carbon dioxide extraction and conventional extraction of chia seed oils: Chemical composition and lipid oxidation. International Journal of Research, 4(10), 563–572.
  • Lee, C. M., Trevino, B., & Chaiyawat, M. (1996). A simple and rapid solvent extraction method for determining total lipids in fish tissue. Journal of AOAC International, 79(2), 487–492.
  • Lucas-Gonzalez, R., Navarro-Coves, S., Pérez-Álvarez, J. A., Fernández-López, J., Muñoz, L. A., & Viuda-Martos, M. (2016). Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Industrial Crops and Products, 94, 774–782. doi:10.1016/j.indcrop.2016.09.057
  • Marineli, R. D. S., Moraes, É. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica, M. R. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT - Food Science and Technology, 59, 1304–1310. doi:10.1016/j.lwt.2014.04.014
  • Martínez-Cruz, O., & Paredes-López, O. (2014). Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. Journal of Chromatography A, 1346, 43–48. doi:10.1016/j.chroma.2014.04.007
  • Martysiak-żurowska, D., & Stołyhwo, A. (2007). Content of furosine in infant formulae and follow-on formulae. Polish Journal of Food and Nutrition Sciences, 57,185–190.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus, 5(6), 1113–24. doi: 10.1039/c3fo60702j
  • Pertiwi, K., Kok, D. E., Wanders, A. J., de, G. J., Zock, P. L., & Geleijnse, J. M. (2019). Circulating n-3 fatty acids and linoleic acid as indicators of dietary fatty acid intake in post-myocardial infarction patients, nutrition, metabolism and cardiovascular diseases, 29(4), 343–350.
  • Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107, 656–663. doi:10.1016/j.foodchem.2007.08.062
  • Romankiewicz, D., Hassoon, W. H., Cacak-Pietrzak, G., Sobczyk, M. B., Wirkowska-WojdyBa, M., CegliNska, A., & Dziki, D. (2017). The effect of chia seeds (salvia hispanica L.) addition on quality and nutritional value of wheat bread. Journal of Food Quality, 2017, 1–7. doi:10.1155/2017/7352631
  • Rufino, M. D. S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121, 996–1002. doi:10.1016/j.foodchem.2010.01.037
  • Sargi, S. C., Silva, B. C., Santos, H. M. C., Montanher, P. F., Boeing, J. S., Santos Júnior, O. O., … Visentainer, J. V. (2013). Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Science and Technology, 33, 541–548. doi:10.1590/S0101-20612013005000057
  • Schmedes, A., & Hølmer, G. (1989). A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. Journal of the American Oil Chemists Society, 66, 813–817. doi:10.1007/BF02653674
  • Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61, 928–931. doi:10.1007/BF02542169
  • Undeland, I., Hultin, H. O., & Richards, M. P. (2002). Added triacylglycerols do not hasten hemoglobin-mediated lipid oxidation in washed minced cod muscle. Journal of Agricultural and Food Chemistry, 50, 6847–6853. doi:10.1021/jf0201982