3,230
Views
6
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Symbiotic effectiveness of cowpea (Vigna unguiculata (L.) Walp.) nodulating rhizobia isolated from soils of major cowpea producing areas in Ethiopia

ORCID Icon, , & | (Reviewing editor)
Article: 1763648 | Received 02 Jan 2020, Accepted 27 Apr 2020, Published online: 12 May 2020

References

  • Adhikari, D., Itoh, K., & Suyama, K. (2013). Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant and Soil, 368(1–2), 341–16. https://doi.org/10.1007/s11104-012-1518-7
  • Ahmad, M. H., Eaglesham, A. R. J., Hassouna, S., Seaman, B., Ayanaba, A., Mulongoy, K., & Pulver, E. L. (1981). Examining the potential for inoculant use with cowpeas in West African soils. Tropical Agriculture (Trinidad), 58(4), 325–335.
  • Akuma, A. (2010). Evaluation of symbiotic effectiveness of rhizobia (Bradyrhizobium spp L.) with groundnut (Arachis hypogaea L.) in Eastern harerghe zone of oromiya reginal state, Ethiopia [MSc Thesis]. Haramaya University.
  • Ampomah, O. Y., Ofori-Ayeh, E., Solheim, B., & Svenning, M. M. (2008). Host range, symbiotic effectiveness and nodulation competitiveness of some indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of ghana. African Journal of Biotechnology, 7(8), 988–996. https://hdl.handle.net/10037/3302
  • Broughto, W. J., & Dilworth, M. J. (1970). Plant nutrient solutions. In P. Somasegaran & H. J. Hoben (Eds.), Handbook for rhizobia; Methods in legume-rhizobium technology (pp. 245–249). Niftal Project, University of Hawaii.
  • Chiamaka, E. O. (2014). Growth and yield response of cowpea (Vigna unguiculata [L] walp) to NPK fertilizer and rhizobia inoculation in the Guinea and sudan savanna zones of ghana [PhD Dissertation]. Kwame Nkrumah University of Science and Technology.
  • Deli, D., Lugi, Z., & Jasmina, R. (1997). Determination of correlative relationships between indicators of nitrogen fixation intensity for alfalfa, Medicago sativa L. Paper presented at 21th meeting of the fodder crops and amenity grasses section of Eucarpia (Vol. 11), 9-12 September. Switzerland: Kartause Ittingen.
  • Denton, M. D., Coventry, D. R., Bellotti, W. D., & Howieson, J. G. (2000). Distribution, abundance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii from alkaline pasture soils in South Australia. Australian Journal of Experimental Agriculture, 40(1), 25–35. https://doi.org/10.1071/EA99035
  • Dos Santos, J. G., Aguiar, A. C. F., Junior, E. M. S., Dadalto, D. L., Sousa, M. R., Xavier, G. R., & de Moura, E. M. (2011). Soil management and efficiency of rhizobia strains of cowpea (Vigna unguiculata (L.) Walp. in the Tropics. Chilean Journal of Agricultural Research, 71(4), 594-600. https://dx.doi.org/10.4067/S0718-58392011000400015
  • Fatima, Z., Zia, M., & Chaudhary, M. F. (2007). Interactive effect of rhizobium strains and P on soybean yield, nitrogen fixation and soil fertility. Pakistan Journal of Botany, 39(1), 255–265.
  • Fening, J. O., & Danso, S. K. A. (2002). Variation in symbiotic effectiveness of cowpea Bradyrhizobia indigenous to ghanaian soils. Applied Soil Ecology, 21(1), 23–29. https://doi.org/10.1016/S0929-1393(02)00042-2
  • Giller, K. E. (2001). Nitrogen fixation in tropical cropping systems (2nd ed.). CAB International.
  • Gulati, A., Rahi, P., & Vyas, P. (2007). Characterization of phosphate solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Current Microbiology, 56(1), 73–79. https://doi.org/10.1007/s00284-007-9042-3
  • He, Y., Guo, L., Zhang, H., & Huang, G. (2011). Symbiotic effectiveness of pea-rhizobia associations and the implications for farming systems in the western Loess Plateau, China. African Journal of Biotechnology, 10(18), 3540–3548. http://dx.doi.org/10.5897/AJB10.1568
  • Hefny, M., Doliñski, R., & MaBek, W. (2001). Variation in symbiotic characters of alfalfa cultivars inoculated with Sinorhizobium meliloti strains. Biology and Fertility of Soils, 33(5), 435–437. https://doi.org/10.1007/s003740100339
  • Howieson, J. G., & Dilworth, M. J. (2016). Working with rhizobia. Australian Center for International Agricultural Research (ACIAR) Monograph No. 173.
  • Kawaka, F., Dida, M. M., Opala, P. A., Ombori, O., Maingi, J., & Osoro, N. (2014). Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of Western Kenya. International Scholarly Research Notices, 2014, 1–8. https://doi.org/10.1155/2014/258497
  • Kucuk, C., Kivanç, M., & Kinaci, E. (2006). Characterization of Rhizobium Sp. isolated from bean. Turkish Journal of Biology, 30, 127–132.
  • Kyei-Boahen, S., Canon, E. N. S., Chikoye, D., & Abaidoo, R. (2017). Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Frontiers in Plant Science, 8, 646–659. https://doi.org/http://dx.doi.10.3389/fpls.2017.00646
  • Legesse, S. A. (2016). Isolation, identification and authentication of root nodule bacteria (Rhizobia) in promoting sustainable agricultural productivity: A review. Journal of Developing Societies, 6(1), 87–93.
  • Lupwayi, N., & Haque, I. (1994). Legume-rhizobium technology manual. Environmental sciences division international livestock center for Africa. Addis Ababa.
  • Manish, K. S., & Kumawat, D. M. (2011). A study on evaluation of nitrogen fixation potential in soybean cultivar using commercial and indigenous strains. Australian Journal of Biological Sciences, 1(4), 93–97.
  • Martins, L. V. M., Neves, M. C. P., & Rumjanek, N. G. (1997). Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the northeast region of Brazil. Soil Biology & Biochemistry, 29(5–6), 1005–1010. https://doi.org/10.1016/S0038-0717(96)00215-5
  • Mulongoy, K., & Ayanaba, A. (1986). Dynamics of the population sizes of cowpea and soybean rhizobia at three locations in West Africa. MIRCEN Journal of Applied Microbiology and Biotechnology, 2(2), 301–308. https://doi.org/10.1007/BF00933496
  • Mwangi, S. N., Karanja, N. K., Boga, H., Kahindi, J. H. P., Muigai, A., & Odee, D. (2011). Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different land use systems in Taita Taveta, Kenya. Tropical and Subtropical Agroecosystems, 13(1), 109–118.
  • Nyoki, D., & Ndakidemi, P. A. (2014). Effects of phosphorus and Bradyrhizobium japonicum on growth and chlorophyll content of cowpea (Vigna unguiculata (L) Walp). American Journal of Agricultural, 410), 1120–1136. https://doi.org/10.9734/AJEA/2014/6736
  • O’Hara, G. W., Howieson, J. G., & Graham, P. H. (2002). Nitrogen fixation and agricultural practice. In G. J. Leigh (Ed.), ‘Nitrogen fixation in the millenium’ (pp. 391–410). Elsevier.
  • Onyango, B., Beatrice, A., Regina, N., Koech, P., Skilton, R., & Francesca, S. (2015). Morphological, genetic and symbiotic characterization of root nodule bacteria isolated from Bambara groundnuts (Vigna subterranea L. Verdc) from soils of Lake Victoria basin, Western Kenya. Journal of Applied Biology and Biotechnology, 3(1), 001–010. https://doi.org/10.7324/JABB.2015.3101
  • Osei, O., Abaidoo, R. C., Ahiabor, B., Boddey, R. M., & Rouws, L. (2018). Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. Applied Soil Ecology: A Section of Agriculture, Ecosystems and Environment, 127, 41–50. https://doi.org/10.1016/j.apsoil.2018.03.003
  • Purcino, H. M. A., Festin, P. M., & Elkan, G. H. (2000). Identification of effective strains of Bradyrhizobium for Archis Pintoi. Tropical Agriculture, 77(4), 226–231.
  • Sanginga, N., Dashiell, K., Diels, J., Vanlauwe, B., Lyasse, O., Carsky, R. J., Tarawali, S., Asafo-Adjei, B., Menkir, A., Schulz, S., Singh, B. B., Chikoye, D., Keatinge, D., & Rodomiro, O. (2003). Sustainable resource management coupled to resilient germplasm to provide new intensive cereal-grain legume livestock systems in the dry savanna. Agriculture, Ecosystems & Environment, 100(2–3), 305–314. https://doi.org/10.1016/S0167-8809(03)00188-9
  • Singleton, P. W., Bohlool, B. B., & Nakao, P. L. (1992). Legume rhizobia inoculation in the tropics. myths and realities. In R. Lal & P. A. Sanchez (Eds.), Myths and Science of Soils of the Tropics (Vol. 29, pp. 135–155). SSSA Special Publication. https://doi.org/10.2136/sssaspecpub29.c8
  • Somasegaran, P., & Hoben, H. J. (1994). Handbook for rhzobia: Methods in legume-rhizobium technology. Springer-Verlag Publisher. https://doi.org/10.1007/978-1-4613-8375-8
  • Subba Rao, N. S. (1988). Biofertilizers in agriculture. Oxford and IBH Publishing Co. Pvt. Ltd.
  • Temesgen, D. (2017). Genetic diversity of rhizobia and rhizobacteria from soybean (Glycine max (L) Merr.): Implication for the commercial production and application to enhance soybean production under low input agriculture in Ethiopia. PhD Dissertation, Addis Ababa University, Addis Ababa.
  • Terpolilli, J. J., O’Hara, G. W., Tiwari, R. P., Dilworth, M. J., & Howieson, J. G. (2008). The model legume medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont sinorhizobium meliloti 1021. New Phytologist, 179(1), 62–66. https://doi.org/10.1111/j.1469-8137.2008.02464.x
  • van Berkum, P., Beyene, D., Vera, F. T., & Keyser, H. H. (1995). Variability among Rhizobium strains originating from nodules of Vicia faba. Applied and Environmental Microbiology, 61(7), 2649–2653. https://doi.org/10.1128/AEM.61.7.2649-2653.1995
  • Van Noorden, G. E., Verbeek, R., Dinh, Q. D., Jin, J., Green, A., Ng, J. L. P., & Mathesius, U. (2016). Molecular signals controlling the inhibition of nodulation by nitrate in Medicago truncatula. International Journal of Molecular Sciences, 17(7), 1060. https://doi.org/10.3390/ijms17071060
  • Vincent, J. M. (1970). A manual for the practical study of the root-nodule bacteria, international biological programme handbook no. 15. Blackwell scientific Publications.
  • Zahid, M., Abbasi, M., Hameed, S., & Rahim, N. (2015). Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize. Frontiers in Microbiology, 6(207), 1–10. https://doi.org/10.3389/fmicb.2015.00207