1,687
Views
2
CrossRef citations to date
0
Altmetric
ANIMAL HUSBANDRY & VETERINARY SCIENCE

Efficacy of squid by-product hydrolysate supplementation on the growth performance, digestive enzyme activities and muscle growth-related genes expression of Penaeus monodon fed on plant protein-based diet

ORCID Icon, , , &
Article: 2103067 | Received 04 Mar 2022, Accepted 14 Jul 2022, Published online: 24 Jul 2022

References

  • Alvarez, J. S., Hernández-Llamas, A., Galindo, J., Fraga, I., García, T., & Villarreal, H. (2007). Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (Pérez-Farfante & Kensley 1997). Aquaculture Research, 38(7), 689–16. https://doi.org/10.1111/j.1365-2109.2007.01654.x
  • AOAC. (1990). Official Methods of Analysis 15th. K. Helrich, Ed. Vol. 1. Association of Official Analytical Chemists, Inc.
  • Areekijseree, M., Engkagul, A., Kovitvadhi, U., Thongpan, A., Mingmuang, M., Rungruangsak-Torrisen, P. P., & Rungruangsak-Torrissen, K. (2004). Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture, 234(1–4), 575–587 https://doi.org/10.1016/j.aquaculture.2003.12.008.
  • Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726–745 https://doi.org/10.1111/j.1365-2621.2006.01513.x.
  • Bernfeld, P. (1951 Enzymes of starch degradation and synthesis Nord, F. F.). . Advances in Enzymology and Related Subjects of Biochemistry, 12 (Interscience Publishers, Inc.), 379–428 https://doi.org/10.1002/9780470122570.ch7.
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
  • Bousopha, S., Nalinanon, S., & Sriket, C. (2016). Production of collagen hydrolysate with antioxidant activity from pharaoh cuttlefish skin. Chiang Mai University Journal of Natural Sciences, 15(2), 151–162. https://doi.org/10.12982/cmujns.2016.00012
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Bulbul, M., Kader, M. A., Asaduzzaman, M., Ambak, M. A., Chowdhury, A. J. K., Hossain, M. S., Ishikawa, M., & Koshio, S. (2016). Can canola meal and soybean meal be used as major dietary protein sources for kuruma shrimp, Marsupenaeus japonicus? Aquaculture, 452 (1 February 2016) , 194–199. https://doi.org/10.1016/j.aquaculture.2015.10.036
  • Burokerkilgore, M., & Wang, K. (1993). A Coomassie Brilliant Blue G-250-based colorimetric assay for measuring activity of calpain and other proteases. Analytical Biochemistry, 208(2), 387–392 https://doi.org/10.1006/abio.1993.1066.
  • Canada, P., Engrola, S., Mira, S., Teodosio, R., Yust, M., Sousa, V., Pedroche, J., Fernandes, J., Conceicao, L., & Valente, L. (2018). Larval dietary protein complexity affects the regulation of muscle growth and the expression of DNA methyltransferases in Senegalese sole. Aquaculture, 491 (1 April 2018) , 28–38 https://doi.org/10.1016/j.aquaculture.2018.02.044.
  • Córdova-Murueta, J. H., & García-Carreño, F. L. (2002). Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture, 210(1–4), 371–384 https://doi.org/10.1016/S0044-8486(02)00011-X.
  • Cruz-Suárez, L. E., & Ricque, D., & AQUACOP. (1992). Effect of squid meal on growth of Penaues monodon juveniles reared in pond pens and tanks. Aquaculture, 106(3–4), 293–299 https://doi.org/10.1016/0044-8486(92)90261-I.
  • Dai, M., Li, S., Fu, C., Qiu, H., & Chen, N. (2020). The potential role of marine protein hydrolyzates in elevating nutritive values of diets for largemouth bass, Micropterus salmoides. Frontiers in Marine Science, 7(April), 1–11 https://doi.org/10.3389/fmars.2020.00197.
  • Dossou, S., Koshio, S., Ishikawa, M., Yokoyama, S., Dawood, M. A. O., El Basuini, M. F., El-Hais, A. M., & Olivier, A. (2018). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture, 3(November2017), 228–235 https://doi.org/10.1016/j.aquaculture.2018.02.010.
  • Ezquerra-Brauer, J. M., & Aubourg, S. (2019). Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: A review. International Journal of Food Science and Technology, 54(4), 987–998. https://doi.org/10.1111/ijfs.14067
  • Forster, I. P., Bechtel, P., Dominy, W. G., Lane, S., Avena, R., Ju, Z. Y., & Conquest, L. (2011). Use of fish hydrolysates and fish meal byproducts of the Alaskan fishing industry in diets for pacific white shrimp Litopenaeus vannamei. North American Journal of Aquaculture, 73(3), 288–295. https://doi.org/10.1080/15222055.2011.598371
  • Gao, Y., Lu, S., Wu, M., Yao, W., Jin, Z., & Wu, X. (2019). Effects of dietary protein levels on growth, feed utilization and expression of growth related genes of juvenile giant grouper (Epinephelus lanceolatus). Aquaculture, 504(September2018), 369–374 https://doi.org/10.1016/j.aquaculture.2019.02.023.
  • García-Ortega, A., Kissinger, K. R., & Trushenski, J. T. (2016). Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture, 452 (1 February 2016) , 1–8 https://doi.org/10.1016/j.aquaculture.2015.10.020.
  • Gonzalez, D., Cordoba, J., & Buitrago, F. (2007). Estudios preliminares en la formulacion de dietas para camaron blanco (Litopenaeus schmitti) utilizando ensilado de pescado. Revista Cientifica, 17(2), 166–172 http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592007000200010.
  • González-Félix, M. L., Perez-Velazquez, M., Ezquerra-Brauer, J. M., Bringas-Alvarado, L., Sánchez-Sánchez, A., & Torres-Arreola, W. (2014). Evaluation of jumbo squid (Dosidicus gigas) byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp (Litopenaeus vannamei). Food Science and Technology (Campinas), 34(3), 552–558 https://doi.org/10.1590/1678-457x.6414.
  • Guillaume, J., Cruz-Ricque, E., Cuzon, G., Van Wormhoudt, A., & Revol, A. (1989). Growth factors in penaeid shrimp feeding Advances in Tropical Aquaculture February 20-Marcch 4, 1989 Tahiti, French Polynesia. , 9 (IFREMER), 327–338 https://archimer.ifremer.fr/doc/1989/acte-1464.pdf.
  • Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review,”. Trends in Food Science and Technology, 51 (May 2016), 24–33 https://doi.org/10.1016/j.tifs.2016.02.007.
  • Hardy, R., & Barrows, F. (2002). Diet formulation and manufacture. In J. Halver & R. Hardy (Eds.), Fish Nutrition (3rd ed., pp. 505–600). Academic Press.
  • Hernández, C., Olvera-Novoa, M. A., Smith, D. M., Hardy, R. W., & Gonzalez-Rodriguez, B. (2011). Enhancement of shrimp Litopenaeus vannamei diets based on terrestrial protein sources via the inclusion of tuna by-product protein hydrolysates. Aquaculture, 317(1–4), 117–123 https://doi.org/10.1016/j.aquaculture.2011.03.041.
  • Hevrøy, E. M., Jordal, A. E. O., Hordvik, I., Espe, M., Hemre, G. I., & Olsvik, P. A. (2006). Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture, 252(2–4), 453–461 https://doi.org/10.1016/j.aquaculture.2005.07.003.
  • Irm, M., Taj, S., Jin, M., Timothée Andriamialinirina, H. J., Cheng, X., & Zhou, Q. (2020). Influence of dietary replacement of fish meal with fish soluble meal on growth and TOR signaling pathway in juvenile Black Sea bream (Acanthopagrus schlegelii). Fish & Shellfish Immunology, 101((June 2020)), 269–276 https://doi.org/10.1016/j.fsi.2020.03.053.
  • Joseph, J., Prabhu, P. V., & Madhavan, P. (1987). Utilization of squid waste as meal. Fishery Technology, 24 (1) , 41–43 https://aquadocs.org/handle/1834/33976.
  • Leal, A. L. G., Castro, P. F., Lima, J. P. V., Souza Correia, E., & Souza Bezerra, R. (2010). Use of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus, L.) feeds. Aquaculture International, 18(4), 635–646 https://doi.org/10.1007/s10499-009-9284-0.
  • Leduc, A., Zatylny-Gaudin, C., Robert, M., Corre, E., Corguille, G. L., Castel, H., Lefevre-Scelles, A., Fournier, V., Gisbert, E., Andree, K. B., & Henry, J. (2018). Dietary aquaculture by-product hydrolysates: Impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genomics, 19(1), 1–20 https://doi.org/10.1186/s12864-018-4780-0.
  • Li, X., Wang, L., Zhang, C., Rahimnejad, S., song, K., & Yuan, X. (2018). Effects of supplementing low-molecular-weight fish hydrolysate in high soybean meal diets on growth, antioxidant activity and non-specific immune response of Pacific white shrimp (Litopenaeus vannamei). Turkish Journal of Fisheries and Aquatic Sciences, 18(5), 717–727. https://doi.org/10.4194/1303-2712-v18_5_07
  • Li, S., Dai, M., Qiu, H., & Chen, N. (2021). Effects of fishmeal replacement with composite mixture of shrimp hydrolysate and plant proteins on growth performance, feed utilization, and target of rapamycin pathway in largemouth bass, Micropterus salmoides. Aquaculture, 533 (25 February 2021) , 736185 https://doi.org/10.1016/j.aquaculture.2020.736185.
  • Lian, P. Z., Lee, C. M., & Park, E. (2005). Characterization of squid-processing byproduct hydrolysate and its potential as aquaculture feed ingredient. Journal of Agricultural and Food Chemistry, 53(14), 5587–5592 https://doi.org/10.1021/jf050402w.
  • Mendoza, R., De Dios, A., Vazquez, C., Cruz, E., Ricque, D., Aguilera, C., & Montemayor, J. (2001). Fishmeal replacement with feather-enzymatic hydrolyzates co-extruded with soya-bean meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 7(3), 143–151 https://doi.org/10.1046/j.1365-2095.2001.00164.x.
  • Morato, P. N., Lollo, P. C. B., Moura, C. S., Batista, T. M., Camargo, R. L., Carneiro, E. M., Amaya-Farfan, J., & Nadal, A. (2013). Whey protein hydrolysate increases translocation of GLUT-4 to the plasma membrane independent of insulin in Wistar rats. PLoS ONE, 8(8), 8 https://doi.org/10.1371/journal.pone.0071134.
  • Nayak, S., Singh, S. K., Ramaiah, N., & Sreepada, R. A. (2010). Identification of upregulated immune-related genes in Vibrio harveyi challenged Penaeus monodon postlarvae. Fish & Shellfish Immunology, 29(3), 544–549 https://doi.org/10.1016/j.fsi.2010.05.010
  • Nguyen, H. T. M., Perez-Galvez, R., & Berge, J. P. (2012). Effect of diets containing tuna head hydrolysates on the survival and growth of shrimp Penaeus vannamei. Aquaculture, 324–325 (12 January 2012) , 127–134 https://doi.org/10.1016/j.aquaculture.2011.11.014
  • Nguyen, C., Nguyen, T. G., Van, N. L., Pham, H. Q., Nguyen, T. H., Pham, H. T., Nguyen, H. T., Ha, T. T., Dau, T. H., Vu, H. T., Nguyen, D. D., Nguyen, N. T. T., Nguyen, N. H., Van Quyen, D., Chu, H. H., & Dinh, K. D. (2016). De novo assembly and transcriptome characterization of major growth-related genes in various tissues of Penaeus monodon. Aquaculture, 4641 , 545–553 https://doi.org/10.1016/j.aquaculture.2016.08.003.
  • Niu, J., Zhang, Y. Q., Liu, Y. J., Tian, L. X., Lin, H. Z., Chen, X., Yang, H. J., & Liang, G. Y. (2014). Effects of graded replacement of fish meal by fish protein hydrolysate on growth performance of early post-larval Pacific white shrimp (Litopenaeus vannamei, Boone). Journal of Applied Animal Research, 42(1), 6–15. https://doi.org/10.1080/09712119.2013.795897
  • Nunes, A. J. P., Sabry-Neto, H., Oliveira-Neto, S., & Burri, L. (2019). Feed preference and growth response of juvenile Litopenaeus vannamei to supplementation of marine chemoattractants in a fishmeal-challenged diet. Journal of the World Aquaculture Society, 50(6), 1048–1063. https://doi.org/10.1111/jwas.12648
  • Pinsirodom, P., & Parkin, K. (2001). Lipase assays. In J. Whitaker (Ed.), Current protocols in food analytical chemistry (pp. C3.1.1–C3.1.13). John Wiley & Sons, Inc.
  • Quinto, B. P. T., Albuquerque, J. V., Bezerra, R. S., Peixoto, S., & Soares, R. (2018). Replacement of fishmeal by two types of fish protein hydrolysate in feed for postlarval shrimp Litopenaeus vannamei. Aquaculture Nutrition, 24(2), 768–776. https://doi.org/10.1111/anu.12605
  • Samocha, T. M., Allen Davis, D., Saoud, I. P., & DeBault, K. (2004). Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 231(1–4), 197–203. https://doi.org/10.1016/j.aquaculture.2003.08.023
  • Sánchez, D. R., Fox, J. M., Gatlin, D. M., III, & Lawrence, A. (2012). Dietary effect of squid and fish meals on growth and survival of Pacific white shrimp Litopenaeus vannamei in the presence or absence of phytoplankton in an indoor tank system. Aquaculture Research, 43(12), 1880–1890. https://doi.org/10.1111/j.1365-2109.2011.02997.x
  • Saneyasu, T., Shindo, H., Honda, K., & Kamisoyama, H. (2018). The extract of soybean protein increases slow-myosin heavy chain expression in C2C12 myotubes. Journal of Nutritional Science and Vitaminology, 64(4), 296–300. https://doi.org/10.3177/jnsv.64.296
  • Seiliez, I., Gabillard, J. C., Skiba-Cassy, S., Garcia-Serrana, D., Gutiérrez, J., Kaushik, S., Panserat, S., & Tesseraud, S. (2008). An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 295(1), 1. https://doi.org/10.1152/ajpregu.00146.2008
  • Shao, J., Zhao, W., Liu, X., & Wang, L. (2018). Growth performance, digestive enzymes, and TOR signaling pathway of Litopenaeus vannamei are not significantly affected by dietary protein hydrolysates in practical conditions. Frontiers in Physiology, 9(Aug), 1–8. https://doi.org/10.3389/fphys.2018.00998
  • Siahpoosh, A., & Alikhani, K. (2016). Evaluation of antioxidant capacity and free radical scavenging activities of pepsin extract of cuttlefish (Sepia pharaonis) from Persian Gulf. Indian Journal of Traditional Knowledge, 15(4), 604–610.
  • Soares, M., Rezende, P. C., Corrêa, N. M., Rocha, J. S., Martins, M. A., Andrade, T. C., Fracalossi, D. M., & Do Nascimentovieira, F. (2020). Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17(April), 100344. https://doi.org/10.1016/j.aqrep.2020.100344
  • Somboonwiwat, K., Supungul, P., Rimphanitchayakit, V., Aoki, T., Hirono, I., & Tassanakajon, A. (2006). Differentially expressed genes in hemocytes of vibrio harveyi-challenged shrimp Penaeus monodon. Journal of Biochemistry and Molecular Biology, 39(1), 26–36. https://doi.org/10.5483/bmbrep.2006.39.1.026
  • Song, F., Xu, D., Mai, K., Zhou, H., Xu, W., He, G., & Yin, Z. (2016). Comparative study on the cellular and systemic nutrient sensing and intermediary metabolism after partial replacement of fishmeal by meat and bone meal in the diet of turbot (Scophthalmus maximus L.). PLoS ONE, 11(11), 1–19. https://doi.org/10.1371/journal.pone.0165708
  • Soonthornchai, W., Rungrassamee, W., Karoonuthaisiri, N., Jarayabhand, P., Klinbunga, S., Söderhäll, K., & Jiravanichpaisal, P. (2010). Expression of immune-related genes in the digestive organ of shrimp, Penaeus monodon, after an oral infection by Vibrio harveyi. Developmental and Comparative Immunology, 34(1), 19–28. https://doi.org/10.1016/j.dci.2009.07.007
  • Soufi-Kechaou, E., Berge, J. P., Jaouen, P., & Amar, R. B. (2015). Optimization of common cuttlefish (Sepia officinalis) protein hydrolysate using pepsin by response surface methodology. Journal of Aquatic Food Product Technology, 24(3), 270–282. https://doi.org/10.1080/10498850.2013.773116
  • Suárez-Jiménez, G. M., Robles-Sánches, R. M., Yépiz-Plascencia, G., Burgos-Hernández, A., & Ezquerra-Brauer, J. M. (2015). In vitro antioxidant, antimutagenic and antiproliferative activities of collagen hydrolysates of jumbo squid (Dosidicus gigas) byproducts. Food Science and Technology, 35(3), 421–427. https://doi.org/10.1590/1678-457X.6658
  • Suresh, A. V., Kumaraguru Vasagam, K. P., & Nates, S. (2011). Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poultry byproduct meal. Aquaculture, 319(1–2), 132–140. https://doi.org/10.1016/j.aquaculture.2011.06.039
  • Tacon, A., Hasan, M., & Subasinghe, R. 2006. Use of fishery resources as feed inputs to aquaculture development: Trends and policy implications FAO Fisheries Circular No. 1018 (99 pp). Food and Agriculture Organization of the United Nations.
  • Tomy, S., Saikrithi, P., James, N., Balasubramanian, C. P., Panigrahi, A., Otta, S. K., Subramoniam, T., & Ponniah, A. G. (2016). Serotonin induced changes in the expression of ovarian gene network in the Indian white shrimp, Penaeus indicus. Aquaculture, 452 (1 February 2016) , 239–246. https://doi.org/10.1016/j.aquaculture.2015.11.003
  • Uddin, M. S., Ahn, H.-M., Kishrimura, H., & Chun, B.-S. (2010). Production of valued materials from squid viscera by subcritical water hydrolysis. Journal of Environmental Biology, 31(5), 675–679 https://pubmed.ncbi.nlm.nih.gov/21387921/
  • Valle, B. C. S., Dantas, E. M., Silva, J. F. X., Bezerra, R. S., Correia, E. S., Peixoto, S. R. M., & Soares, R. B. (2015). Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of Litopenaeus vannamei postlarvae. Aquaculture Nutrition, 21(1), 105–112. https://doi.org/10.1111/anu.12149
  • Venugopal, V. (2009). Marine product for health care. In V. Venugopal (Ed.), Marine product for health care (pp. 185–214). CRC Press.
  • Wang, C.-H., Doan, C. T., Nguyen, V. B., Nguyen, A. D., & Wang, S.-L. (2019). Reclamation of fishery processing waste: A mini-review. Molecules, 24(2234), 17. https://doi.org/10.3390/molecules24122234
  • Wei, Y., Liang, M., & Xu, H. (2020). Fish protein hydrolysate affected amino acid absorption and related gene expressions of IGF-1/AKT pathways in turbot (Scophthalmus maximus). Aquaculture Nutrition, 26(1), 145–155. https://doi.org/10.1111/anu.12976
  • Wei, Y., Wang, J., Zhang, X., Duan, M., Jia, L., Xu, H., Liang, M., & Liu, J. (2021). Fish protein hydrolysate supplementation in plant protein based diets for tiger puffer (Takifugu rubripes) is an effective strategy of fish meal sparing. Aquaculture Reports, 20(July 2021) , 100720. https://doi.org/10.1016/j.aqrep.2021.100720
  • Wu, M., Lu, S., Wu, X., Jiang, S., Luo, Y., Yao, W., & Jin, Z. (2017). Effects of dietary amino acid patterns on growth, feed utilization and hepatic IGF-I, TOR gene expression levels of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles. Aquaculture, 468(1 February 2017) , 508–514. https://doi.org/10.1016/j.aquaculture.2016.11.019
  • Yaghoubi, M., Mozanzadeh, M. T., Marammazi, J. G., Safari, O., & Gisbert, E. (2016). Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture, 464(1 November 2016) , 50–59. https://doi.org/10.1016/j.aquaculture.2016.06.002
  • Yuan, X. Y., Liu, M. Y., Cheng, H. H., Huang, Y. Y., Dai, Y. J., Bin, L. W., & Jiang, G. Z. (2019). Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture, 510(15 August 2019) , 225–233. https://doi.org/10.1016/j.aquaculture.2019.05.056
  • Zhou, Y., Thirumurugan, R., Wang, Q., Lee, C. M., & Davis, D. A. (2016). Use of dry hydrolysate from squid and scallop product supplement in plant based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture, 465(1 December 2016), 53–59. https://doi.org/10.1016/j.aquaculture.2016.08.028