965
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Effects of foliar fertilization of biostimulants obtained from sewage sludge on olive yield

, &
Article: 2124702 | Received 19 Aug 2022, Accepted 09 Sep 2022, Published online: 18 Sep 2022

References

  • AEMET. (2021). Agencia Estatal de Meteorología. Spain. http://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes?w=1&datos=−1&n=1&k=and
  • Angin, I., Aslantas, R., Gunes, A., Kose, M., & Ozkan, G. (2017). Effects of sewage sludge amendment on some soil properties, growth, yield and nutrient content of raspberry (Rubus idaeus L.). Erwerbs-Obstbau, 59(2), 93–12. https://doi.org/10.1007/s10341-016-0303-9
  • Ávila-Pozo, P., Parrado, J., Caballero, P., Díaz-López, M., Bastida, F., & Tejada, M. (2021). Use of slaughterhouse sludge in the bioremediation of an oxyfluorfen‑polluted soil. International Journal of Environmental Research, 15(4), 723–731. https://doi.org/10.1007/s41742-021-00351-z
  • Baglieri, A., Cadili, V., Mozzetti Monterumici, C., Gennari, M., Tabasso, S., Montoneri, E., Nardi, S., & Negre, M. (2014). Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Scientia Horticulturae, 176, 194–199. https://doi.org/10.1016/j.scienta.2014.07.002
  • Besnard, G., Terral, J. F., & Cornille, A. (2018). On the origins and domestication of the olive: A review and perspectives. Annals of Botany, 121(3), 385–403. https://doi.org/10.1093/aob/mcx145
  • Çelik, H., Katkat, A. V., Aşık, B. B., & Turan, M. A. (2010). Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis, 42(1), 29–38. https://doi.org/10.1080/00103624.2011.528490
  • Chatzistathis, T., Monokrousos, N., Psoma, P., Tziachris, P., Metaxa, I., Strikos, G., Papadopoulos, F. H., & Papadopoulos, A. H. (2020). How fully productive olive trees (Olea europaea L., cv. ‘Chondrolia Chalkidikis’) manage to over-satisfy their P nutritional needs under low Olsen P availability in soils? Scientia Horticulturae, 265, 109251. https://doi.org/10.1016/j.scienta.2020.109251
  • Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
  • Colla, G., & Rouphael, Y. (2015). Biostimulants in agriculture. Scientia Horticulturae, 196, 1–2. https://doi.org/10.1016/j.scienta.2015.10.044
  • Comission, E. (ed.). (2016). Circular economy package-proposal for a regulation of the European parliament and of the council (Vol. 2016/0084).
  • Duhamel, M., & Vandenkoornhuyse, P. (2013). Sustainable agriculture: Possible trajectories from mutualistic symbiosis and plant neodomestication. Trends in Plant Science, 11(11), 597–600. https://doi.org/10.1016/j.tplants.2013.08.010
  • Eid, E. M., Shaltout, K. H., Alamri, S. A. M., Alrumman, S. A., Hussain, A. A., Sewelam, N., El-Bebany, A. F., Alfarhan, A. H., Picó, Y., & Barcelo, D. (2021). Prediction models based on soil properties for evaluating the uptake of eight heavy metals by tomato plant (Lycopersicon esculentum Mill.) grown in agricultural soils amended with sewage sludge. Journal of Environmental Chemical Engineering, 9(5), 105977. https://doi.org/10.1016/j.jece.2021.105977
  • El-Sanatawy, A. M., AshShormillesy, S. M. A. I., El-Yazied, A. A., El-Gawad, H. G. A., Azab, E., Gobouri, A. A., Sitohy, M., & Osman, A. (2021). Enhancing grain yield and nitrogen accumulation in wheat plants grown under a Mediterranean arid environment by foliar spray with papain-released whey peptides. Agronomy, 11(10), 1913. https://doi.org/10.3390/agronomy11101913
  • Kandil, A. A., Sharief, A. E. M., Seadh, S. E., & Altai, D. S. K. (2016). Role of humic acid and amino acids in limiting loss of nitrogen fertilizer and increasing productivity of some wheat cultivars grown under newly reclaimed sandy soil. International Journal of Advanced Research in Biological Science, 3(4), 123–136. http://s-o-i.org/1.15/ijarbs-2016-3-4-18
  • Kapoore, R. V., Wodd, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49, 107754. https://doi.org/10.1016/j.biotechadv.2021.107754
  • Kocira, A., Lamorska, J., Kornas, R., Nowosad, N., Tomaszewska, M., Leszczyńska, D., Kozłowicz, K., & Sylwester Tabor, S. (2020). Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy, 10(2), 189. https://doi.org/10.3390/agronomy10020189
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthesis biomembranes. Methods in Enzymology, 148, 350–383. https://doi.org/10.1016/0076-6879(87)48036-1
  • MAPA, (1986). Métodos oficiales de análisis. Ministerio de Agricultura, Pesca y Alimentación 1. pp. 221–285.
  • Onofrei, V., Teliban, G. C., Burducea, M., Lobiuc, A., Sandu, C. B., Tocai, M., & Robu, T. (2017). Organic foliar fertilization increases polyphenol content of Calendula officinalis L. Industrial Crops and Products, 109, 509–513. https://doi.org/10.1016/j.indcrop.2017.08.055
  • Quartieri, M., Cavani, L., Lucchi, A., Marangoni, B., & Tagliavini, M. (2022). Effects of the rate of protein hydrolysis spray concentration on growth of potted kiwifruit (Actinidia deliciosa) plants. Acta Horticulturae, 594(594), 341–347. https://doi.org/10.17660/ActaHortic.2002.594.42
  • Radkowski, A., & Radkowska, I. (2018). Influence of foliar fertilization with amino acid preparations on morphological traits and seed yield of timothy. Plant, Soil and Environment, 64(No. 5), 209–213. https://doi.org/10.17221/112/2018-PSE
  • Rodríguez-Morgado, B., Caballero, P., Paneque, P., Gómez, I., Parrado, J., & Tejada, M. (2019). Obtaining edaphic biostimulants/biofertilizers from sewage sludge using fermentative processes. Short-time effects on soil biochemical properties. Environmental Technology, 40(3), 399–406. https://doi.org/10.1080/09593330.2017.1393016
  • Rodríguez-Morgado, B., Gómez, I., Parrado, J., García-Martínez, A. M., Aragón, C., & Tejada, M. (2015). Obtaining edaphic biostimulants/biofertilizers from different sewage sludges. effects on soil biological properties. Environmental Technology, 36(17), 2217–2226. https://doi.org/10.1080/09593330.2015.1024760
  • Sarijeva, G., Knapp, M., & Lichtenthaler, H. K. (2007). Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology, 164(7), 950–955. https://doi.org/10.1016/j.jplph.2006.09.002
  • Searchinger, T. (2013). The great balancing cct: Installment 1 of creating a sustainable food future. World Resources Institute.
  • Tejada, M., & Benítez, C. (2020). Effects of different organic wastes on soil biochemical properties and yield in an olive grove. Applied Soil Ecology, 146, 103371. https://doi.org/10.1016/j.apsoil.2019.103371
  • Tejada, M., & Gonzalez, J. L. (2003). Influence of foliar fertilization with amino acids and humic acids on productivity and quality of asparagus. Biological Agriculture & Horticulture, 21(3), 277–291. https://doi.org/10.1080/01448765.2003.9755270
  • Tejada, M., Rodríguez-Morgado, B., Gómez, I., Franco-Andreu, L., Benítez, C., & Parrado, J. (2016). Use of biofertilizers obtained from sewage sludges on maize yield. European Journal of Agronomy, 78, 13–19. https://doi.org/10.1016/j.eja.2016.04.014
  • Tejada, M., Rodríguez-Morgado, B., Paneque, P., & Parrado, J. (2018). Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. European Journal of Agronomy, 96, 54–59. https://doi.org/10.1016/j.eja.2018.03.003
  • WRB. (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations: Roma, 192. https://www.fao.org/3/i3794en/I3794en.pdf
  • Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10(1), 177. https://doi.org/10.1038/s41598-019-56954-2