1,023
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Analysis of lipid classes and the fatty acid composition of fresh and the salted fish, Alburnus tarichi

ORCID Icon
Article: 2126052 | Received 22 Jun 2022, Accepted 13 Sep 2022, Published online: 20 Sep 2022

References

  • Aberoumand, A. (2020). Effects of traditional fish processing methods on the proximate composition and ph of fish black pomfret (Parastromateus Niger). Potravinarstvo Slovak Journal of Food Sciences, 14(May), 271–11. https://doi.org/10.5219/1294
  • Abraha, B., Admassu, H., Mahmud, A., Tsighe, N., Shui, X. W., & Fang, Y. (2018). Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Processing & Technology, 6(4), 376–382. https://doi.org/10.15406/mojfpt.2018.06.00191
  • Ackman, R.G. (2002), Editorial: Freshwater fish lipids — an overlooked source of beneficial long-chain n-3 fatty acids. Eur. J. Lipid Sci. Technol., 104: 253–254. https://doi.org/10.1002/1438-9312(200205)104:5<253::AID-EJLT253>3.0.CO;2-B https://onlinelibrary.wiley.com/doi/10.1002/1438-9312(200205)104:5%3C253::AID-EJLT253%3E3.0.CO;2-B
  • Akpinar, M. A., Görgün, S., & Akpinar, A. E. (2009). A comparative analysis of the fatty. Acid Profiles in the Liver and Muscles of Male and Female Salmo Trutta Macrostigma. Food Chemistry, 112(1), 6–8. https://www.sciencedirect.com/science/article/pii/S0308814608005815
  • Akpinar, M. A., Görgün, S., & Akpinar, A. E. (2009). A comparative analysis of the fatty acid profiles in the liver and muscles of male and female Salmo trutta macrostigma. Food Chemistry, 112(1), 6–8. https://www.sciencedirect.com/science/article/pii/S0308814608005815
  • Balcik Misir, G., Kutlu, S., & Cibuk, S. (2013). Determination of total lipid and fatty acid composition of pearl mullet (chalcalburnus tarichi, pallas 1811). Turkish Journal of Fisheries and Aquatic Sciences, 13(5), 777–783. https://doi.org/10.4194/1303-2712-v13_5_01
  • Bayır, A., Necdet Sirkecioğlu, A., Mevlüt Aras, N., Aksakal, E., İbrahim Haliloğlu, H., & Bayır, M. (2010). Fatty acids of neutral and phospholipids of three endangered trout: salmo trutta caspius kessler, salmo trutta labrax pallas and salmo trutta macrostigma dumeril. Food Chemistry, 119(3), 1050–1056. https://www.sciencedirect.com/science/article/pii/S0308814609009844
  • Cai, Q., Wu, Y., Li, L., Wang, Y., Yang, X., & Zhao, Y. (2017). Lipid oxidation and fatty acid composition in salt-dried yellow croaker (Pseudosciaena polyactis) during processing. Journal of Ocean University of China, 16(5), 855–862. https://doi.org/10.1007/s11802-017-3233-8
  • Corapci, B., & Guneri, N. (2020). Comparative assessment of nutritional composition and physicochemical properties of fresh, freeze- dried and rehydrated rainbow trout (Oncorhynchus mykiss walbaum, 1792) mince. Food Science and Technology (Brazil), 40(suppl 1), 163–169. https://doi.org/10.1590/fst.08419
  • El Bassir Arha, B.A., Mohamed Karar, A. M. H., Zakaria, A. H., Azrag, T. A. R., & Mohamed, Y. A. (2015). Effect of salting on the nutritive value of Clarias lazera. Engormix. https://en.engormix.com/aquaculture/articles/effect-salting-nutritive-value-t36463.htm
  • Elshehawy, S. M., El-Dengawy, R. A., & Farag, Z. S. (2015). Sensory, chemical and physical characteristics of some traditional salted fish samples from Egyptian Market. International Journal of Food Science and Nutrition Engineering, 2015(6), 219–225. https://doi.org/10.5923/j.food.20150506.01
  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509. https://www.sciencedirect.com/science/article/pii/S0021925818648495
  • Garaffo, M. A., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic (ia) and thrombogenic (it) health lipid indices, of raw roe of blue fin tuna (thunnus thynnus l.) and their salted product “bottarga. Food and Nutrition Sciences, 2(7), 736–743. https://doi.org/10.4236/fns.2011.27101
  • Görgün, S., & Akpinar, M. A. (2007). Liver and muscle fatty acid composition of mature and immature rainbow trout (Oncorhynchus mykiss) fed two different diets. Biologia (Bratisl), 62(3), 351–355. https://doi.org/10.2478/s11756-007-0058-8
  • Görgün, S., Akpinar, N., Zengin, G., Akpinar, M. A., Günlü, A., Güler, G. Ö., & Aktümsek, A. (2013). Determination of fatty acid profiles of total,neutral, and polar lipids in different tissues of Vimba vimba (L.,1758) from Eǧirdir lake (Tsparta, Turkey). Turkish Journal of Zoology, 37(5), 627–634. https://doi.org/10.3906/zoo-1212-33
  • Guizani, N., Rahman, M. S., Al-Ruzeiqi, M. H., Al-Sabahi, J. N., & Sureshchandran, S. (2011). Effects of brine concentration on lipid oxidation and fatty acids profile of hot smoked tuna (Thunnus albacares) stored at refrigerated temperature. Journal of Food Science and Technology, 51(3), 577–582. https://doi.org/10.1007/s13197-011-0528-4
  • Guo, X., Chen, S., Cao, J., Zhou, J., Chen, Y., Jamali, M. A., & Zhang, Y. (2019). Hydrolysis and oxidation of protein and lipids in dry-salted grass carp (Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids. RSC Advances, 9(68), 39545–39560. https://doi.org/10.1039/c9ra07019b
  • Hafez, N. E., Awad, A. M., Ibrahim, S. M., Mohamed, H. R., & El-Lahamy, A. A. (2019). Effect of Salting Process on Fish Quality. Journal of Nutrition and Food Processing, 2(1), 1–6. https://doi.org/10.31579/2637-8914/011
  • Hedayatifard, M., & Yousefian, M. (2010). The fatty acid composition of golden mullet fillet liza aurata as affected by dry-salting. Journal of Fisheries and Aquatic Science, 5(3), 208–2015. https://doi.org/10.3923/jfas.2010.208.215
  • Kalyoncu, L., Kıssal, S., & Aktumsek, A. (2009). Seasonal changes in the total fatty acid composition of Vimba, Vimba vimba tenella (Nordmann, 1840) in Eğirdir Lake, Turkey. Food Chemistry, 116(3), 728–730. https://www.sciencedirect.com/science/article/pii/S0308814609003069
  • Kızmaz, V., Başhan, M., & Çiçek, T. (2021). Seasonal Variation of Fatty Acid Composition in Muscle Total Lipids of Male and Female Individuals of Alburnus tarichi. Journal of the Institute of Science and Technology, 11(1), 91–98. https://doi.org/10.21597/jist.741467
  • Küçükgülmez, A., Çelik, M., Kadak, E. A., & Çıkrıkçı, M. (2011). Proximate and fatty acid composition of the keeled mullet (Liza carinata) from the North East Mediterranean Sea. Journal of Applied Biological Sciences, 5(1), 17–19. www.nobel.gen.tr
  • Lei, L., Li, J., Li, G. Y., Hu, J. N., Tang, L., Liu, R., Fan, Y. W., & Deng, Z. Y. (2012). Stereospecific analysis of triacylglycerol and phospholipid fractions of five wild freshwater fish from poyang lake. Journal of Agricultural and Food Chemistry, 60(7), 1857–1864. https://doi.org/10.1021/jf204584t
  • Moretti, V. M., Vasconi, M., Caprino, F., & Bellagamba, F. (2016). Fatty acid profiles and volatile compounds formation during processing and ripening of a traditional salted dry fish product. Journal of Food Processing and Preservation, 41(5), 1–12. https://doi.org/10.1111/jfpp.13133
  • Nikiforova, A., Zamaratskaia, G., & Pickova, J. (2019). Fatty acid composition of salted and fermented products from Baikal omul (Coregonus autumnalis migratorius). Journal of Food Science and Technology, 57(2), 595–605. https://doi.org/10.1007/s13197-019-04091-z
  • Ormanci, H. B., Colakoglu, F. A., & Yildiz, F. (2015). Nutritional and sensory properties of salted fish product, lakerda. Cogent Food and Agriculture, 1(1), 1008348. https://doi.org/10.1080/23311932.2015.1008348
  • Özogul, Y., & Özogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100(4), 1634–1638. https://doi.org/10.1016/j.foodchem.2005.11.047
  • Pinela, S., Quintella, B. R., Almeida, P.R., & Lança, M. J. (2009). Comparación del perfil de ácidos grasos en los lípidos neutrales y en los fosfolípidos de los músculos de la lamprea marina anádroma (Petromyzon marinus L.) (Agnatha) de la cuenca hidrográfica de tres ríos Portugueses. Scientia Marina, 73(4), 785–795. https://doi.org/10.3989/scimar.2009.73n4785
  • Sambra, V., Echeverria, F., Valenzuela, A., Chouinard-Watkins, R., & Valenzuela, R. (2021). Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients, 13(3), 1–21. https://doi.org/10.3390/nu13030986
  • Shirai, N., Suzuki, H., Tokairin, S., Ehara, H., & Wada, S. (2002). Dietary and seasonal effects on the dorsal meat lipid composition of Japanese (Silurus asotus) and Thai catfish (Clarias macrocephalus and hybrid Clarias macrocephalus and Clarias galipinus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(3), 609–619. https://www.sciencedirect.com/science/article/pii/S1095643302000818 https://doi.org/10.1016/S1095-64330200081-8
  • Steffens, W., & Wirth, M. (2005). Freshwater fish-an important source of n-3 polyunsaturated fatty acids. Archives of Polish Fisheries, 13(1), 5–16. http://www.infish.com.pl/wydawnictwo/Archives/Fasc/work_pdf/Vol13Fasc1/Vol13fasc1%20-%20w01.pdf
  • Uysal, K., & Aksoylar, M. Y. (2005). Seasonal variations in fatty acid composition and the N-6/N-3 fatty acid ratio of pikepeach (Sander lucioperca) muscle lipids. Ecology of Food and Nutrition, 44(1), 23–35 https://doi.org/10.1080/03670240590904308.
  • Valenzuela, R., Ortiz, M., Hernández-Rodas, M. C., Echeverría, F., & Videla, L. A. (2020). Targeting n-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease. Current Medicinal Chemistry, 27(31), 5250–5272. https://doi.org/10.2174/0929867326666190410121716
  • Zúñiga-Hernández, J., Sambra, V., Echeverría, F., Videla, L. A., & Valenzuela, R. (2022). N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: Beneficial effects in the prevention and treatment of respiratory diseases. Food and Function, 13(8), 4260–4272. https://doi.org/10.1039/d1fo03551g