2,603
Views
1
CrossRef citations to date
0
Altmetric
ANIMAL HUSBANDRY & VETERINARY SCIENCE

Candidate genes associated with economically important traits in dairy goats

ORCID Icon &
Article: 2149131 | Received 21 Jul 2022, Accepted 15 Nov 2022, Published online: 28 Nov 2022

References

  • Ajafar, M. H., AL-Thuwaini, A. H. K., & Mohammed, T. (2022). The reproductive traits of sheep and their influencing factors. Reviews in Agricultural Science, 10, 82–39. https://doi.org/10.7831/ras.10.0_82
  • Alam, M. B. B., Omar, A. I., Faruque, M. O., Notter, D. R., Periasamy, K., Mondal, M. M. H., Sarder, M. J. U., Shamsuddin, M., Cao, J., Du, X., Wu, Z., & Zhao, S. (2019). Single nucleotide polymorphisms in candidate genes are significantly associated with resistance to Haemonchus contortus infection in goats. Journal of Animal Science and Biotechnology, 10(1), 1–15.https://doi.org/10.1186/s40104-019-0327-8
  • Aldridge, M. E., Fearon, J. E., Haynes, B. P., Miller, H. M., Sanford, K. Y., Scott, R. R., & Franks, B. R. (2018). Solutions for grand challenges in Goat and Sheep Production. Biotropia, 26, 55–64. https://doi.org/10.11598/btb.2019.26.1.944
  • Alim, M. A., Hossain, M. M. K., Nusrat, J., Salimullah, M., Salimullah, M., Shu-Hong, Z., & Alam, J. (2019). Genetic effects of leptin receptor (LEPR) polymorphism on litter size in a Black Bengal goat population. Animal Biology, 69(4), 411–420. https://doi.org/10.1163/15707563-00001079
  • An, X., Hou, J. X., Zhao, H. B., Bai, L., Peng, J. Y., Zhu, C. M., Yan, Q. M., Song, Y. X., Wang, J. G., & Cao, B. Y. (2013a). Polymorphism identification in goat DGAT1 and STAT5A genes and association with milk production traits. Czech Journal of Animal Science, 58(No. 7), 321–327. https://doi.org/10.17221/6862-CJAS
  • An, X., Ma, T., Hou, J., Fang, F., Han, P., Yan, Y., Zhao, H., Song, Y., Wang, J., & Cao, B. (2013b). Association analysis between variants in KISS1 gene and litter size in goats. BMC Genetics, 14(1), 1–6. https://doi.org/10.1186/1471-2156-14-63
  • An, X., Song, Y., Hou, J., Han, P., Peng, J., Zhang, L., Wang, J., & Cao, B. (2015). Mutations in the MTHFR gene and their associations with milk production traits in dairy goats. Small Ruminant Research, 130, 76–80. https://doi.org/10.1016/j.smallrumres.2015.06.008
  • Ariyarathne, H. B. P. C., Ariyaratne, H. B. S., & Lokugalappatti, L. G. S. (2017). Single nucleotide polymorphism of candidate genes in non-descript local goats of Sri Lanka. Livestock Science, 196, 49–54. https://doi.org/10.1016/j.livsci.2016.12.012
  • Arnal, M., Robert-Granié, C., & Larroque, H. (2018). Diversity of dairy goat lactation curves in France. Journal of Dairy Science, 101(12), 11040–11051. https://doi.org/10.3168/jds.2018-14980
  • Baenyi, S. P., Junga, J. O., Tiambo, C. K., Birindwa, A. B., Karume, K., Tarekegn, G. M., & Ochieng, J. W. (2020). Production systems, genetic diversity and genes associated with prolificacy and Milk production in indigenous goats of Sub-Saharan Africa: A Review. Open Journal of Animal Sciences, 10(4), 735–749. https://doi.org/10.4236/ojas.2020.104048
  • Bagatoli, A., Melo de, A. L. P., Gasparino, E., Rodrigues, M. T., Ferreira, L., Garcia, O. S. R., & Soares, M. A. M. (2021). Association between polymorphisms of APOB, SLC27A6, AGPAT6 and PRLR genes and milk production and quality traits in goat. Small Ruminant Research, 203, 1–8. https://doi.org/10.1016/j.smallrumres.2021.106484
  • Bagnicka, E., Łukaszewicz, M., & Ådnøy, T. (2016). Genetic parameters of somatic cell score and lactose content in goat ’ s milk. Journal of Animal and Feed Science, 25(3), 210–215. https://doi.org/10.22358/jafs/65552/2016
  • Berihulay, H., Li, Y., Gebrekidan, B., Gebreselassie, G., Liu, X., Jiang, L., & Ma, Y. (2019). Whole genome resequencing reveals selection signatures associated with important traits in Ethiopian indigenous goat populations. Frontiers in Genetics, 10, 1–12. https://doi.org/10.3389/fgene.2019.01190
  • Biobaku, K. T., & Amid, S. A. (2018). Predisposing factors associated with diseases in animals in Nigeria and possible botanical immunostimulants and immunomodulators: A Review. Bangl. J. Vet. Med, 16(1), 87–101. https://doi.org/10.3329/bjvm.v16i1.37381
  • Bishop, S. C., & Morris, C. A. (2007). Genetics of disease resistance in sheep and goats ଝ. Small Ruminant Research, 70(1), 48–59. https://doi.org/10.1016/j.smallrumres.2007.01.006
  • Bolacali, M., Öztürk, Y., Yilmaz, O., Küçük, M., & Karsli, M. A. (2019). Effect of non-genetic factors on the reproductive performance and milk yield characteristics of Hair Goats. Kocatepe Veterinary Journal, 12, 52–61. https://doi.org/10.30607/kvj.472839
  • Brzáková, M., Rychtáˇrová, J., Ítek, J. C., & Sztankóová, Z. (2021). A candidate gene association study for economically important traits in Czech dairy goat breeds. animals, 11(6), 1–15. https://doi.org/10.3390/ani11061796
  • Cao, G. L., Chu, M. X., Fang, L., Di, R., Feng, T., & Li, N. (2010). Analysis on DNA sequence of KiSS - 1 gene and its association with litter size in goats. Molecular Biology Reports, 37(8), 3921–3929. https://doi.org/10.1007/s11033-010-0049-7
  • Castañeda-Bustos, V. J., Montaldo, H. H., Torres-Hernández, G., Pérez-Elizalde, S., Valencia-Posadas, M., Hernández-Mendo, O., & Shepard, L. (2014). Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats. Journal of Dairy Science, 97(4), 2462–2473. https://doi.org/10.3168/jds.2013-7503
  • Cecchinato, A., Ribeca, C., Chessa, S., Bittante, G., Bittante, G., & Bittante, G. (2014). Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal, The International Journal of Animal Biosciences, 8(7), 1062–1070. https://doi.org/10.1017/S1751731114001098
  • Chevillotte, E., Giralt, M., Miroux, B., Ricquier, D., & Villarroya, F. (2007). Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production, Diabetes, 56(4), 1042–1050. DIABETES 56. https://doi.org/10.2337/db06-1300.
  • Christiansen, L. S., Munch-Petersen, B., & Knecht, W. (2015). Non-viral deoxyribonucleoside kinases-diversity and practical use. Journal of Genetics and Genomics, 42(5), 235–248. https://doi.org/10.1016/j.jgg.2015.01.003
  • Crepaldi, P., Nicoloso, L., Coizet, B., Milanesi, E., Pagnacco, G., Fresi, P., Dimauro, C., & Macciotta, N. P. P. (2013). Association of acetyl-coenzyme A carboxylase alpha, stearoyl-coenzyme A desaturase, and lipoprotein lipase genes with dairy traits in Alpine goats. Journal of Dairy Science, 96(3), 1856–1864. https://doi.org/10.3168/jds.2012-5978
  • CSA, 2021. Central Statistical Agency. Agricultural sample survey 2020/2021. Report on livestock and livestock characteristics (private peasant holdings). Statistical bulletin. Addis Ababa.
  • Cui, Y., Yan, H., Wang, K., Xu, H., Zhang, X., Zhu, H., Liu, J., Qu, L., Lan, X., & Pan, C. (2018). Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Frontiers in Genetics, 9, 1–11. https://doi.org/10.3389/fgene.2018.00091
  • Curi, R. A., Oliveira, H. N., De Silveira, A. C., & Lopes, C. R. (2005). Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livestock Production Science, 94(3), 159–167. https://doi.org/10.1016/j.livprodsci.2004.10.009
  • Dagnachew, B. S., & Ådnøy, T. (2014). Additive and dominance effects of casein haplotypes on milk composition and quality in Norwegian dairy goats. Small Ruminant Research, 122(1–3), 59–69. https://doi.org/10.1016/j.smallrumres.2014.07.020
  • Dangar, N. S., Pandya, G. M., Ramani, U. V., Kharadi, V. B., & Brahmkshtri, B. P. (2022). Association study of fecundity gene BMP 15 with prolificacy in surti goats under farm and field condition of South Gujarat Region. Ind J Vet Sci and Biotech, 18, 100–104. https://doi.org/10.21887/ijvsbt.18.2.21
  • Despain, D., Nay, K., & Heaton, K. (2018). Junior Livestock Shows “ Market Goats ”. https://digitalcommons.usu.edu/extension_curall/1859/
  • Dettori, M. L., Pazzola, M., Paschino, P., Pira, M. G., & Vacca, G. M. (2015). Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed. 1. The LALBA gene. Journal of Dairy Research, 82(4), 434–441. https://doi.org/10.1017/S0022029915000461
  • Dixit, S. P., Sivalingam, J., Tyagi, A. K., Saroha, V., Sharma, A., & Nagda, R. K. (2015). Association of novel SNPs in the candidate genes affecting caprine milk fatty acids related to human health. Meta Gene, 4, 45–56. https://doi.org/10.1016/j.mgene.2015.01.004
  • Dupont, L., Blacher, S., Colige, A. C. M. A., Dupont, L., Joannes, L., Morfoisse, F., Blacher, S., Monseur, C., Deroanne, C. F., Noël, A., & Colige, A. C. M. A. (2022). ADAMTS2 and ADAMTS14 can substitute for ADAMTS3 in adults for pro-VEGFC activation and lymphatic homeostasis. JCI Insight, 7(8), e151509. https://doi.org/10.1172/jci.insight.151509
  • Dupont, L., Ehx, G., Chantry, M., Monseur, C., Leduc, L. J., Thomassin, J. M., Thomassin, J. M., Thomassin, J. M., Thomassin, J. M., Colige, A., Colige, A., Colige, A., Colige, A., & Colige, A. (2018). Spontaneous atopic dermatitis due to immune dysregulation in mice lacking Adamts2 and 14. Matrix Biology, 70, 140–157. https://doi.org/10.1016/j.matbio.2018.04.002
  • Easa, A. A., Selionova, M., Aibazov, M., Mamontova, T., Sermyagin, A., Belous, A., Abdelmanova, A., Deniskova, T., & Zinovieva, N. (2022). Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes, 13(10), 1–18. https://doi.org/10.3390/genes13101773
  • Eusebi, P. G., Martinez, A., & Cortes, O. (2020). Genomic tools for effective conservation of livestock breed diversity. Diversity, 12, 1–16. https://doi.org/10.3390/d12010008
  • E, G., Zhao, Y., & Huang, Y. (2019). Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Molecular Biology Reports, 1–7. https://doi.org/10.1007/s11033-019-04904-6
  • Feng, T., Geng, C. X., Lang, X. Z., Chu, M. X., Cao, G. L., Di, R., Fang, L., Chen, H. Q., Liu, X. L., & Li, N. (2011). Polymorphisms of caprine GDF 9 gene and their association with litter size in Jining Grey goats. Molecular Biology Reports, 38(8), 5189–5197. https://doi.org/10.1007/s11033-010-0669-y
  • Ferreira, L., Amélia, M., Soares, M., Teixeira, M., Luiz, J., Araujo, S., De Lúcia, A., De Melo, P., & Gasparino, E. (2020). UCP2 and PPARG gene polymorphisms and their association with milk yield and composition traits in goats. Small Ruminant Research, 192, 106210. https://doi.org/10.1016/j.smallrumres.2020.106210
  • Fu, H., Wada-Hiraike, O., Hirano, M., Kawamura, Y., Sakurabashi, A., Shirane, A., Morita, Y., Isono, W., Oishi, H., Koga, K., Oda, K., Kawana, K., Yano, T., Kurihara, H., Osuga, Y., & Fujii, T. (2014). SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology, 155(8), 3079–3087. https://doi.org/10.1210/en.2014-1025
  • García, V., Rovira, S., Boutoial, K., & López, M. B. (2014). Improvements in goat milk quality : A review. Small Ruminant Research, 121(1), 51–57. https://doi.org/10.1016/j.smallrumres.2013.12.034
  • Gavran, M., Antunović, Z., & Gantner, V. (2021). Candidate genes associated with economically important traits of sheep - A Review. Agric. conspec. sci, 86, 195–201.
  • Getaneh, M., Taye, M., & Kebede, D. (2022). Conformation trait characterization of indigenous goats in selected districts of East Gojjam zone, Amhara region, Ethiopia. Journal of Applied Animal Research, 50(1), 225–238. https://doi.org/10.1080/09712119.2022.2058516
  • Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565–570. https://doi.org/10.5194/aab-62-565-2019
  • Gootwine, E. (2020). Genetics and breeding of sheep and goats. Animal Agriculture (pp. 183–198). Elsevier Inc., Rishon LeZion. https://doi.org/10.1016/B978-0-12-817052-6.00010-0
  • Guenzle, J., Wolf, L. J., Garrelfs, N. W. C., Goeldner, J. M., Osterberg, N., Schindler, C. R., Saavedra, J. E., & Weyerbrock, A. (2017). ATF3 reduces migration capacity by regulation of matrix metalloproteinases via NF κ B and STAT3 inhibition in glioblastoma. Cell Death Discovery, 3(1), 1–12. https://doi.org/10.1038/cddiscovery.2017.6
  • Guo, J., Zhong, J., Li, L., Zhong, T., Wang, L., Song, T., & Zhang, H. (2019). Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genetics, Selection and Evolution, 51, 1–18. https://doi.org/10.1186/s12711-019-0512-4
  • Gu, B., Sun, R., Fang, X., Zhang, J., Zhao, Z., Huang, D., Zhao, Y., & Zhao, Y. (2022). Genome-wide association study of body conformation traits by whole genome sequencing in dazu black goats. animals, 12(5), 1–11. https://doi.org/10.3390/ani12050548
  • Haile-Mariam, M., Bowman, P. J., & Goddard, M. E. (2003). G enetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 80(3), 189–200. https://doi.org/10.1016/S0301-6226(02)00188-4
  • Hara, L. O., & Smith, L. B. (2015). Androgen receptor roles in spermatogenesis and infertility. Best practice and research clinical endocrinology & metabolism, 29(4), 595–605. https://doi.org/10.1016/j.beem.2015.04.006
  • He, Y., Ma, X., Liu, X., Zhang, C., & Li, J. (2010). Candidate genes polymorphism and its association to prolificacy in Chinese goats. Journal of Agricultural Science, 2(1), 88–92. https://doi.org/10.5539/jas.v2n1p88
  • He, B., Mi, Y., & Zhang, C. (2013). Molecular and cellular endocrinology gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken. Molecular and Cellular Endocrinology, 370, 32–41. https://doi.org/10.1016/j.mce.2013.02.010
  • He, C., Wang, C., Chang, Z. H., Guo, B. L., Li, R., Yue, X. P., Lan, X. Y., Chen, H., & Lei, C. Z. (2011). AGPAT6 polymorphism and its association with milk traits of dairy goats. Genetics and Molecular Research, 10(4), 2747–2756. https://doi.org/10.4238/2011.November.4.8
  • Islam, R., Liu, X., Gebreselassie, G., Abied, A., Ma, Q., & Ma, Y. (2020). Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese arbas cashmere goat. Genes & Genomics, 42(8), 893–899. https://doi.org/10.1007/s13258-020-00937-5
  • Jin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., Chu, M., Di, R., Wei, C., & Wang, H. (2020). Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from nagqu Tibet. Animals, 10, 1–11. https://doi.org/10.3390/ani10091599
  • Joshi, A., Kalauni, D., & Bhattarai, N. (2018). Factors affecting productive and reproductive traits of indigenous goats in Nepal. Archives of Veterinary Science and Medicine, 01(1), 19–27. https://doi.org/10.26502/avsm.003
  • Jun-jie, W., Zhang, T., Chen, Q., Zhang, R., Li, L., & Duncan, H. F. (2020). Genomic signatures of selection associated with litter size trait in Jining gray goat. Frontiers in Genetics, 11, 1–14. https://doi.org/10.3389/fgene.2020.00001
  • Kang, X., Li, M., Liu, M., Liu, S., Pan, M. G., Wiggans, G. R., Rosen, B. D., & Liu, G. E. (2020). Genomics Copy number variation analysis reveals variants associated with milk production traits in dairy goats. Genomics, 112(6), 4934–4937. https://doi.org/10.1016/j.ygeno.2020.09.007
  • Khalkhkali‑evrigh, R., Hedayat, N., & Ming, L. (2022). Identification of selection signatures in Iranian dromedary and Bactrian camels using whole genome sequencing data. Scientific reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-14376-7
  • Kim, E., Elbeltagy, A. R., Aboul-naga, A. M., Rischkowsky, B., Sayre, B., Mwacharo, J. M., & Rothschild, M. F. (2016). Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94
  • Knight, P. G., & Glister, C. (2006). Focus on TGF- b Signalling TGF- b superfamily members and ovarian follicle development. Reproduction, 132(2), 191–206. https://doi.org/10.1530/rep.1.01074
  • Lai, F., Zhai, H., Cheng, M., Ma, J., Cheng, S., Ge, W., Zhang, G., Wang, J., Zhang, R., Wang, X., Min, L., Song, J., & Shen, W., 2016. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Scientific Reports (pp.1–12). https://doi.org/10.1038/srep38096
  • Le Provost, F., Leroux, C., Martin, P., Gaye, P., & Djiane, J. (1994). Prolactin gene expression in ovine and caprine mammary gland. Neuroendocrinology, 60(3), 305–313. https://doi.org/10.1159/000126763
  • Li, X., Su, R., Wan, W., Zhang, W., Jiang, H., Qiao, X., Fan, Y., Zhang, Y., Wang, R., Liu, Z., Wang, Z., Liu, B., Ma, Y., Zhang, H., Zhao, Q., Zhong, T., Di, R., Jiang, Y., Chen, W., … Li, J. (2017). Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-016-0028-x
  • Liu, D., Niu, X., Tyasi, T. L., Qin, N., Zhu, H., Chen, X., & Xu, R. (2019). New polymorphisms of PAPPA and PAPPA 2 genes and their associations with egg production traits in Chinese Dagu chickens. Indian Journal of Animal Research, 53, 880–885. https://doi.org/10.18805/ijar.B-774
  • Luigi-sierra, M. G., Landi, V., Guan, D., Delgado, J. V., Castelló, A., Cabrera, B., Mármol-sánchez, E., Alvarez, J. F., Gómez-carpio, M., Martínez, A., Such, X., Jordana, J., & Amills, M. (2020). A genome-wide association analysis for body, udder, and leg conformation traits recorded in Murciano-Granadina goats. Journal of Dairy Science, 103(12), 11605–11617. https://doi.org/10.3168/jds.2020-18461
  • Lukens, J. R., Gross, J. M., Calabrese, C., Iwakura, Y., Lamkanfi, M., & Vogel, P. (2013). Critical role for inflammasome-independent IL-1 β production in osteomyelitis. Osteoimmunology, 111, 1066–1071. https://doi.org/10.1073/pnas.1318688111
  • Luo, J., Wang, W., & Sun, S. (2019). Research advances in reproduction for dairy goats. Asian-Australasian Journal of Animal Sciences, 32(8), 1284–1295. https://doi.org/10.5713/ajas.19.0486
  • Lyu, Z., Qin, N., Tyasi, T. L., Zhu, H., Liu, D., Yuan, S., & Xu, R. (2016). The hippo/MST pathway member SAV1 plays a suppressive role in development of the prehierarchical follicles in hen ovary. Plos One, 11(8), 1–18. https://doi.org/10.1371/journal.pone.0160896
  • Mackle, T. R., Dwyer, D. A., Ingvartsen, K. L., Chouinard, P. Y., Ross, D. A., & Bauman, D. E. (2000). Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. Journal of Dairy Science, 83(1), 93–105. https://doi.org/10.3168/jds.S0022-0302(00)74860-0
  • Maitra, A., Sharma, R., Ahlawat, S., Tantia, M. S., Roy, M., & Prakash, V. (2014). Association analysis of polymorphisms in caprine KiSS1 gene with reproductive traits. Animal Reproduction Science, 151(1–2), 71–77. https://doi.org/10.1016/j.anireprosci.2014.09.013
  • Malveiro, E., Pereira, M., Marques, P. X., Santos, I. C., Belo, C., Renaville, R., & Cravador, A. (2001). Polymorphisms at the five exons of the growth hormone gene in the algarvia goat : Possible association with milk traits. Small Ruminant Research, 41(2), 163–170. https://doi.org/10.1016/S0921-4488(01)00198-5
  • Mandal, M., Mishra, C., Dash, S. K., Priyadarshini, P., Sabat, S. S., Swain, L., & Sahoo, M. (2018). Genomic insight to the disease resistance in goat. The Pharma Innovation Journal, 7, 98–103.
  • Manjunath, S., Kumar, G. R., Mishra, B. P., Mishra, B., Sahoo, A. P., Joshi, C. G., Tiwari, A. K., Rajak, K. K., & Janga, S. C. (2015). Genomic analysis of host – Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways. Veterinary Research, 46(1), 1–15. https://doi.org/10.1186/s13567-015-0153-8
  • Martin, P., Palhière, I., Maroteau, C., Bardou, P., Canale-, K., Sarry, J., Woloszyn, F., Bertrand-michel, J., Racke, I., Besir, H., Rupp, R., & Tosser-klopp, G. (2017). A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-02052-0
  • Martin, P., Palhière, I., Maroteau, C., Clément, V., David, I., Klopp, G. T., & Rupp, R. (2018). Genome-wide association mapping for type and mammary health traits in French dairy goats identifies a pleiotropic region on chromosome 19 in the Saanen breed. Journal of Dairy Science, 101(6), 1–13. https://doi.org/10.3168/jds.2017-13625
  • Massender, E. (2022). Investigating Genomic Methods to Improve the Productivity of Canadian Dairy Goats. The University of Guelph.
  • Mazinani, M., & Rude, B. (2020). Population, world production and quality of sheep and goat products. American Journal of Animal and Veterinary Sciences, 15(4), 291–299. https://doi.org/10.3844/ajavsp.2020.291.299
  • Miao, F., Luo, Q., Zhao, H., & Qin, X. (2016). Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/srep37983
  • Moioli, B., D’Andrea, M., & Pilla, F. (2007). Candidate genes affecting sheep and goat milk quality. Small Ruminant Research, 68(1–2), 179–192. https://doi.org/10.1016/j.smallrumres.2006.09.008
  • Mucha, S., Mrode, R., Coffey, M., Kizilaslan, M., Desire, S., & Conington, J. (2018). Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. Journal of Dairy Science, 101(3), 2213–2225. https://doi.org/10.3168/jds.2017-12919
  • Muigai, A. W. T., Okeyo, A. M., & Ojango, J. M. K. (2018). Goat production in Eastern Africa: Practices, breed characteristics, and opportunities for their sustainability. Sustainable Goat Production in Adverse Environments, 1, 31–57. https://doi.org/10.1007/978-3-319-71855-2_3
  • Mustefa, A., Banerjee, S., Gizaw, S., Taye, M., Getachew, T., Areaya, A., Abebe, A., & Besufekad, S. (2019). Reproduction and survival analysis of Boer and their crosses with Central Highland goats in Ethiopia. Livestock Research for Rural Development, 31.
  • Naicy, T., Venkatachalapathy, R. T., Aravindakshan, T. V., & Radhika, G. (2016). Nerve growth factor gene ovarian expression, polymorphism identification, and association with litter size in goats. Theriogenology, 1–7. https://doi.org/10.1016/j.theriogenology.2016.07.011
  • Nazari-Ghadikolaei, A., Mehrabani-Yeganeh, H., Miarei-Aashtiani, S. R., Staiger, E. A., Rashidi, A., & Huson, H. J. (2018). Genome-wide association studies identify candidate genes for coat color and mohair traits in the Iranian Markhoz Goat. Frontiers in Genetics, 9, 1–15. https://doi.org/10.3389/fgene.2018.00105
  • Nejad, J. G., Sung, K., Saad, M. I., Abdelkhalek, T. M., Hanafi, M. Y., & Kamel, M. A. (2017). Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation. Journal of Animal Science and Technology, 59, 1–6. https://doi.org/10.1186/s40781-016-0125-1
  • Onzima, R. B., Upadhyay, M. R., Doekes, H. P., Brito, L. F., Huson, H. J., Kanis, E., Groenen, M. A. M., & Crooijmans, R. P. M. A. (2018). Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan goat breeds. Frontiers in Genetics, 9, 1–13. https://doi.org/10.3389/fgene.2018.00318
  • Otsuka, F., Mctavish, K. J., & Shimasaki, S. (2011). Integral role of GDF-9 and BMP-15 in ovarian function. Molecular Reproduction & Development, 21(1), 9–21. https://doi.org/10.1002/mrd.21265
  • Pardo, J. I. S., Bermejo, J. V. D., Ariza, A. G., Jurado, J. M. L., Navas, C. M., Pastrana, C. I., Martínez Del, M. A. M., & González, F. J. N. (2022). Candidate genes and their expressions involved in the regulation of milk and meat production and quality in goats. Animals, 12. https://doi.org/10.3390/ani12080988
  • Pilla, L., Patuzzo, Æ. R., Rivoltini, Æ. L., Santantonio, Æ. C., Tosi, Æ. D., Srivastava, P. K., Hoos, Æ. A., Santinami, Æ. M., & Parmiani, G. (2006). A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon- a in metastatic melanoma patients. Cancer Immunol Immunother, 55(8), 958–968. https://doi.org/10.1007/s00262-005-0084-8
  • Presta, M., Andrés, G., Leali, D., Era, P. D., & Ronca, R. (2009). Inflammatory cells and chemokines sustain FGF2-induced angiogenesis. European Cytokine Network, 20, 39–50. https://doi.org/10.1684/ecn.2009.0155
  • Pulina, G., Milán, M. J., Lavín, M. P., Theodoridis, A., Morin, E., Capote, J., & Thomas, D. L. (2018). Invited review : Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 101, 6715–6729. https://doi.org/10.3168/jds.2017-14015
  • Qu, Y., Liu, Y., Ma, L., & Milk, S. N. P. Á. (2011). Novel SNPs of butyrophilin (BTN1A1) and milk fat globule epidermal growth factor (EGF) 8 (MFG - E8) are associated with milk traits in dairy goat. Molecular Biology Reports, 8(1), 371–377. https://doi.org/10.1007/s11033-010-0118-y
  • Raina, V. S., Korur, A., Chakravarty, A. K., & Vohra, V. (2020). Marker‑assisted selection vis‑à‑vis bull fertility: Coming full circle–a review. Molecular Biology Reports, 47(11), 9123–9133. https://doi.org/10.1007/s11033-020-05919-0
  • Ray, S., Dash, S. K., Dhal, S. K., Nayak, G. D., & Parida, A. K. (2016). Genetic studies on reproductive performance of indigenous goats in Northern Odisha. Exploratory Animal and Medical Research, 6, 192–198.
  • Riley, L. G., Wynn, P. C., Wynn, P. C., Raadsma, H. W., Raadsma, H. W., Sheehy, P. A., & Sheehy, P. A. (2010). The influence of extracellular matrix and prolactin on global gene expression profiles of primary bovine mammary epithelial cells in vitro. Animal Genetics, 41(1), 55–63. https://doi.org/10.1111/j.1365-2052.2009.01964.x
  • Rui-Qian, Z., Lai, F. N., Wang, J. J., Zhai, H. L., Zhao, Y., Sun, Y. J., Min, L. J., & Shen, W. (2018). Analysis of the SNP loci around transcription start sites related to goat fecundity trait base on whole genome resequencing. Gene, 643, 1–6. https://doi.org/10.1016/j.gene.2017.12.002
  • Sasazaki, S., Kawaguchi, F., Nakajima, A., Yamamoto, R., Akiyama, T., Kohama, N., Yoshida, E., Kobayashi, E., Honda, T., Oyama, K., & Mannen, H. (2020). Detection of candidate polymorphisms around the QTL for fat area ratio to rib eye area on BTA7 using whole-genome resequencing in Japanese Black cattle. Animal Science Journal, 1–6. https://doi.org/10.1111/asj.13335
  • Scholtens, M., Jiang, A., Smith, A., Littlejohn, M., Lehnert, K., Snell, R., Lopez-villalobos, N., Garrick, D., & Blair, H. (2020). Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. Journal of Animal Science and Biotechnology, 2, 1–14. https://doi.org/10.1186/s40104-020-00453-2
  • Schrooten, C., Bovenhuis, H., Coppieters, W., & Van Arendonk, J. A. M. (2000). Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. Journal of Dairy Science, 83(4), 795–806. https://doi.org/10.3168/jds.S0022-0302(00)74942-3
  • Sciascia, Q., Pacheco, D., & Mccoard, S. A. (2013). Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR) C1-dependent and independent cell signaling. Journal of Dairy Science, 96(4), 2327–2338. https://doi.org/10.3168/jds.2012-6267
  • Sebastiani, C., Arcangeli, C., Torricelli, M., Ciullo, M., Nicoletta, D., Cinti, G., Fisichella, S., & Biagetti, M. (2022). Marker-assisted selection of dairy cows for β -casein gene A2 variant. Italian Journal of Food Science, 34(2), 21–27. https://doi.org/10.15586/ijfs.v34i2.2178
  • Sebastian, M., McLaren, A., Mrode, R., Coffey, M., Rus, M., Broadbent, J., & Conington, J. (2016). Genetic aspects of conformation in dairy goats. Goat Veterinary Society Journal, 32, 37–43.
  • Seixas, L., De Melo, C. B., Tanure, C. B., & Peripolli, V. (2017). Heat tolerance in Brazilian hair sheep. Asian-Australas J Anim Sci, 30(4), 593–601. https://doi.org/10.5713/ajas.16.0191
  • Shaha, M., Miah, G., Lima, A., Miazi, O. F., & Das, A. (2021). Identification of polymorphisms in GDF9 and BMP15 genes in Jamunapari and Crossbred goats in Bangladesh. Research Square. https://doi.org/10.21203/rs.3.rs-1102219/v1
  • Shingfield, K. J., Ahvenja¨rvi, S., Toivonen, V., Vanhatalo, A., Huhtanen, P., & Griinari, J. M. (2008). Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. British Journal of Nutrition. British Journal of Nutrition, 99(5), 971–983. https://doi.org/10.1017/S0007114507853323
  • Shi, H., Zhao, W., Zhang, C., Shahzad, K., Luo, J., & Loor, J. J. (2016). Transcriptome-wide analysis reveals the role of PPARý controlling the lipid metabolism in goat mammary epithelial cells. PPAR Research, 2016, 1–11. https://doi.org/10.1155/2016/9195680
  • Siddiki, A. M. A. M. Z., Miah, G., Islam, M. S., Kumkum, M., Rumi, M. H., Baten, A., & Hossain, M. A. (2020). Goat genomic resources: The search for genes associated with its economic traits. International Journal of Genomics, 2020, 1–13. https://doi.org/10.1155/2020/5940205
  • Silpa, M. V., Naicy, T., Aravindakshan, T. V., Radhika, G., Venkatachalapathy, R. T., & Kurian, E. (2020). Sirtuin3 gene tissue expression pro fi ling, SNP detection and its association with body conformation traits in goats. Small Ruminant Research, 184, 106017. https://doi.org/10.1016/j.smallrumres.2019.11.003
  • Skapetas, B., & Bampidis, V. (2016). Goat production in the world: Present situation and trends. Livestock Research for Rural Development, 28. https://www.lrrd.org/lrrd28/11/skap28200.html
  • Suarez, A. A. R., Van Renne, N., Baumert, T. F., & Lupberger, J. (2018). Viral manipulation of STAT3: Evade, exploit, and injure. PLOS Pathogens, 1, 1–21. https://doi.org/10.1371/journal.ppat.1006839
  • Sutherland, K. D., Lindeman, G. J., Sutherland, K. D., Lindeman, G. J., Knocking, J. E. V., Lindeman, G. J., Lindeman, G. J., Visvader, J. E., Visvader, J. E., Sutherland, K. D., Lindeman, G. J., Sutherland, K. D., Lindeman, G. J., Knocking, J. E. V., & Lindeman, G. J. (2007). Knocking off SOCS genes in the mammary gland. Cell Cycle, 6(7), 799–803. https://doi.org/10.4161/cc.6.7.4037
  • Suyadi, S., Andre Septian, W., Furqon, A., Susilorini, T. E., & Nasich, M., 2019. Reproduction index of Kacang goat dam reared under Closed population in Buduran sub-district, Sidoarjo Regency, East Java, Indonesia, in: Annual Conference on Environmental Science, Society and Its Application. IOP Conf. Series: Earth and Environmental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/391/1/012007
  • Sztacho, M., Segeletz, S., Sanchez-fernandez, M. A., Czupalla, C., Niehage, C., & Hoflack, B. (2016). BAR Proteins PSTPIP1/2 regulate podosome dynamics and the resorption activity of osteoclasts. Plos One, 1–25. https://doi.org/10.1371/journal.pone.0164829
  • Talouarn, E., Bardou, P., Palhière, I., Oget, C., Clément, V., Vargoats, T., Tosser-klopp, G., Rupp, R., & Robert-granié, C. (2020). Genome wide association analysis on semen volume and milk yield using different strategies of imputation to whole genome sequence in French dairy goats. BMC Genetics, 21(1), 1–13. https://doi.org/10.1186/s12863-020-0826-9
  • Tarekegn, G. M. (2016). Molecular characterization of Ethiopian indigenous goat populations: Genetic diversity and structure, demographic dynamics and assessment of the Kisspeptin gene polymorphism. Addis Ababa University.
  • Tarekegn, G. M., Khayatzadeh, N., Liu, B., Osama, S., Haile, A., Rischkowsky, B., Zhang, W., Tesfaye, K., Dessie, T., Mwai, O. A., Djikeng, A., & Mwacharo, J. M. (2021). Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evolutionary Applications, 14(7), 1716–1731. https://doi.org/10.1111/eva.13118
  • Tesema, Z., Kefyalew, A., Kebede, D., Getachew, T., Kefale, A., & Deribe, B. (2020). Reproductive performance and milk production of Central Highland and Boer x Central Highland goats. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e05836
  • Valencia-posadas, M., Barboza-Corona, J. E., Ángel-sahagún, C. A., Gutiérrez-chávez, A. J., Martínez-jaime, O. A., & Montaldo, H. H. (2017). Phenotypic correlations between milk production and conformation traits in goats. Acta Universitaria, 27(3), 3–8. https://doi.org/10.15174/au.2017.1093
  • Wang, K., Kang, Z., Jiang, E., Yan, H., Zhu, H., Liu, J., Qu, L., Lan, X., & Pan, C. (2020a). Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology, 146, 20–25. https://doi.org/10.1016/j.theriogenology.2020.01.079
  • Wang, K., Liu, X., Qi, T., Hui, Y., Yan, H., Qu, L., Lan, X., & Pan, C. (2020b). Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics. https://doi.org/10.1016/j.ygeno.2020.11.024
  • Wang, X., Liu, J., Zhou, G., Guo, J., Yan, H., Niu, Y., Li, Y., Yuan, C., Geng, R., Lan, X., An, X., Tian, X., Zhou, H., Song, J., Jiang, Y., & Chen, Y. (2016). Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/s41598-016-0001-8
  • Wang, X., Yang, Q., Wang, K., Yan, H., Pan, C., Chen, H., Liu, J., Zhu, H., Qu, L., & Lan, X. (2018). Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology, 125, 115–121. https://doi.org/10.1016/j.theriogenology.2018.10.013
  • Wickramasinghe, S., Rincon, G., & Medrano, J. F. (2011). Variants in the pregnancy-associated plasma protein-A2 gene on Bos Taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle. Journal of Dairy Science, 94(3), 1552–1558. https://doi.org/10.3168/jds.2010-3237
  • Wijayanti, D., Zhang, S., Bai, Y., Pan, C., Chen, H., Qu, L., Guo, Z., & Lan, X. (2022). Investigation on mRNA expression and genetic variation within goat SMAD2 gene and its association with litter size. Animal Biotechnology, 1–9. https://doi.org/10.1080/10495398.2022.2077214
  • Wu, Y., Zhang, Y., Qin, Y., Cai, W., Zhang, X., Xu, Y., Dou, X., Wang, Z., Han, D., Wang, J., Lin, G., Wang, L., Hao, J., Fu, S., Chen, R., Sun, Y., Bai, Z., Gu, M., & Wang, Z. (2022). Association analysis of single-nucleotide polymorphism in prolactin and its receptor with productive and body conformation traits in Liaoning cashmere goats. Archives Animal Breeding, 65(2), 145–155. https://doi.org/10.5194/aab-65-145-2022
  • Xu, Y., Miller, P. C., Phoon, C. K. L., Ren, M., Nargis, T., Rajan, S., Hussain, M. M., & Schlame, M. (2022). LPGAT1 controls the stearate/palmitate ratio of phosphatidylethanolamine and phosphatidylcholine in sn-1 speci fi c remodeling. Journal of Biological Chemistry, 298(3), 101685. https://doi.org/10.1016/j.jbc.2022.101685
  • Yakan, A., Özkan, H., Şakar, A. E., Ünal, N., & Özbeyaz, C. (2018). Gene expression levels in some candidate genes for mastitis resistance, milk yield, and milk quality of goats reared under different feeding systems. Turkish Journal of Veterinary and Animal Sciences, 42, 18–28. https://doi.org/10.3906/vet-1704-7
  • Yang, Y., Cao, J., & Shi, Y. (2004). Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase. Journal of Biological Chemistry, 279(53), 55866–55874. https://doi.org/10.1074/jbc.M406710200
  • Yao, Y., Cai, X., Yu, H., Xu, Q., Li, X., Yang, Y., Meng, X., Huang, C., & Li, J. (2019). PSTPIP2 attenuates joint damage and suppresses inflammation in adjuvant-induced arthritis. European Journal of Pharmacology, 859, 172558. https://doi.org/10.1016/j.ejphar.2019.172558
  • Yaşar, P., Ayaz, G., Damla, S., Gizem, U., & Mesut, G. (2017). Molecular mechanism of estrogen-estrogen receptor signaling. Reproductive Medicine and Biology, 16(1), 4–20. https://doi.org/10.1002/rmb2.12006
  • Zarazaga, L. A., Gatica, M. C., Hernández, H., Keller, M., Chemineau, P., Delgadillo, J. A., & Guzmán, J. L. (2019). The reproductive response to the male effect of 7- or 10-month-old female goats is improved when photostimulated males are used. Animal, 13(8), 1658–1665. https://doi.org/10.1017/S1751731118003397
  • Zhang, B., Chang, L., Lan, X., Asif, N., Guan, F., Fu, D., Li, B., Yan, C., Zhang, H., Zhang, X., Huang, Y., Chen, H., Yu, J., & Li, S. (2018). Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere, and meat. GigaScience, 7, 1–11. https://doi.org/10.1093/gigascience/giy105
  • Zhao, H., Ding, T., Ren, Y., Li, T., Li, R., Fan, Y., Yan, J., Zhao, Y., Li, M., Yu, Y., & Qiao, J. (2016). Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. Human Reproduction, 31(3), 607–622. https://doi.org/10.1093/humrep/dev345
  • Zhao, H., Wu, X., Cai, H., Pan, C., Lei, C., Chen, H., & Lan, X. (2013). Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats. Gene, 532(2), 203–210. https://doi.org/10.1016/j.gene.2013.09.062