1,152
Views
1
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Combining sensory panels with Analytic Hierarchy Process (AHP) to assess nectarine and peach quality

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2161184 | Received 12 Jul 2022, Accepted 18 Dec 2022, Published online: 20 Feb 2023

References

  • Amidei, R., Castellan, L., Missere, D., Grandi, M., & Lugli, S. (2017). Fruit sensory test of new sweet cherry cultivars. Acta Horticulturae, 1161(1161), 593–23. https://doi.org/10.17660/ACTAHORTIC.2017.1161.94
  • Ares, G., Antúnez, L., Bruzzone, F., Vidal, L., Giménez, A., Pineau, B., Beresford, M. K., Jin, D., Paisley, A. G., Chheang, S. L., Roigard, C. M., & Jaeger, S. R. (2015). Comparison of sensory product profiles generated by trained assessors and consumers using CATA questions: Four case studies with complex and/or similar samples. Food Quality and Preference, 45, 75–86. https://doi.org/10.1016/J.FOODQUAL.2015.05.007
  • Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375–384. https://doi.org/10.1016/J.FOODCHEM.2006.05.030
  • Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition, 50(5), 369–389. https://doi.org/10.1080/10408391003626322
  • Baviera-Puig, A., García-Melón, M., Ortolá, M. D., & López-Cortés, I. (2021). Proposal of a new orange selection process using sensory panels and AHP. International Journal of Environmental Research and Public Health 2021, 18(7), 3333. https://doi.org/10.3390/IJERPH18073333
  • Bazzano, L. A. (2006). The high cost of not consuming fruits and vegetables. Journal of the American Dietetic Association, 106(9), 1364–1368. https://doi.org/10.1016/J.JADA.2006.06.021
  • Blanda, G., Lorenzo, A. E., Ae, C., Ae, A. B., & Ae, A. C. (2008). Phenolic content and antioxidant capacity versus consumer acceptance of soaked and vacuum impregnated frozen nectarines. European Food Research and Technology, 227(1), 191–197. https://doi.org/10.1007/s00217-007-0709-6
  • Christofi, M., Mourtzinos, I., Lazaridou, A., Drogoudi, P., Tsitlakidou, P., Biliaderis, C. G., & Manganaris, G. A. (2021). Elaboration of novel and comprehensive protocols toward determination of textural properties and other sensorial attributes of canning peach fruit. Journal of Texture Studies, 52(2), 228–239. https://doi.org/10.1111/jtxs.12577
  • Crisosto, C. H., & Crisosto, G. M. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology, 38(3), 239–246. https://doi.org/10.1016/J.POSTHARVBIO.2005.07.007
  • Crisosto, C. H., Crisosto, G. M., Echeverria, G., & Puy, J. (2006). Segregation of peach and nectarine (Prunus persica (L.) Batsch) cultivars according to their organoleptic characteristics. Postharvest Biology and Technology, 39(1), 10–18. https://doi.org/10.1016/J.POSTHARVBIO.2005.09.007
  • Debjani, C., Das, S., & Das, H. (2013). Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. Journal of Food Science and Technology, 50(6), 1088–1096. https://doi.org/10.1007/S13197-011-0433-X/FIGURES/2
  • Delgado, C., Crisosto, G. M., Heymann, H., & Crisosto, C. H. (2013). Determining the primary drivers of liking to predict consumers’ acceptance of fresh nectarines and peaches. Journal of Food Science, 78(4), 605–614. https://doi.org/10.1111/1750-3841.12063
  • Divya, P. J., Jamuna, P., Jyothi, L. A., & Yildiz, F. (2016). Antioxidant properties of fresh and processed Citrus aurantium fruit. Cogent Food & Agriculture, 2(1), 1184119. https://doi.org/10.1080/23311932.2016.1184119
  • Echeverría, G., Cantín, C. M., Ortiz, A., López, M. L., Lara, I., & Graell, J. (2015). The impact of maturity, storage temperature and storage duration on sensory quality and consumer satisfaction of “Big Top®” nectarines. Scientia Horticulturae, 190, 179–186. https://doi.org/10.1016/j.scienta.2015.04.022
  • Faisal, S., Chakraborty, S., Devi, H., & Puranik, V. (2017). Sensory evaluation of probiotic whey beverages formulated from Orange powder and flavor using fuzzy logic Introduction. International Food Research Journal, 24(2), 703–710. http://www.ifrj.upm.edu.my/24%20(02)%202017/(34).pdf
  • Fogliatto, F. S., & Albin, S. L. (2003). An AHP-based procedure for sensory data collection and analysis in quality and reliability applications. Food Quality and Preference, 14(5–6), 375–385. https://doi.org/10.1016/S0950-3293(03)00006-5
  • Fogliatto, F. S., Albin, S. L., & Tepper, B. J. (1999). A hierarchical approach to optimizing descriptive analysis multiresponse experiments. Journal of Sensory Studies, 14(4), 443–465. https://doi.org/10.1111/J.1745-459X.1999.TB00127.X
  • Giné-Bordonaba, J., Cantín, C. M., Echeverría, G., Ubach, D., & Larrigaudière, C. (2016). The effect of chilling injury-inducing storage conditions on quality and consumer acceptance of different Prunus persica cultivars. Postharvest Biology and Technology, 115, 38–47. https://doi.org/10.1016/J.POSTHARVBIO.2015.12.006
  • González-Mohino, A., Jiménez, A., Rufo, M., Paniagua, J. M., Olegario, L. S., & Ventanas, S. (2021). Correlation analysis between acoustic and sensory technique data for cooked pork loin samples. LWT, 141, 110882. https://doi.org/10.1016/J.LWT.2021.110882
  • Gotor-Vila, A., Usall, J., Torres, R., Solsona, C., & Teixidó, N. (2017). Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit. LWT - Food Science and Technology, 82, 274–282. https://doi.org/10.1016/J.LWT.2017.04.034
  • Gurmeric, V. E., Dogan, M., Toker, O. S., Senyigit, E., & Ersoz, N. B. (2013). Application of different multi-criteria decision techniques to determine optimum flavour of prebiotic pudding based on sensory analyses. Food and Bioprocess Technology, 6(10), 2844–2859. https://doi.org/10.1007/S11947-012-0972-9/TABLES/13
  • Harker, F. R., Marsh, K. B., Young, H., Murray, S. H., Gunson, F. A., & Walker, S. B. (2002). Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biology and Technology, 24(3), 241–250. https://doi.org/10.1016/S0925-5214(01)00157-0
  • Haypek, E., Silva, L. H. M., Batista, E., Marques, D. S., Meireles, M. A. A., & Meirelles, A. J. A. (2000). Recovery of aroma compounds from Orange essential oil. Brazilian Journal of Chemical Engineering, 17(4), 705–712. https://doi.org/10.1590/S0104-66322000000400034
  • Iglesias, I., & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120(1), 41–50. https://doi.org/10.1016/J.SCIENTA.2008.09.011
  • International Olive Oil Council, I. (2005). Method for the organoleptic assessment of extra virgin olive oil applying to use a designation of origin. COI/T.20/Doc. no. 22. INTERNATIONAL OLIVE OIL COUNCIL.
  • Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143
  • Johnson, A. C., & Ali Al Mukhaini, E. M. (2016). Drying studies on peach and strawberry slices. 2(1), 1141654. https://doi.org/10.1080/23311932.2016.1141654
  • Kaushik, N., Gondi, A. R., Rana, R., & Srinivasa Rao, P. (2015). Application of fuzzy logic technique for sensory evaluation of high pressure processed Mango pulp and litchi juice and its comparison to thermal treatment. Innovative Food Science & Emerging Technologies, 32, 70–78. https://doi.org/10.1016/J.IFSET.2015.08.007
  • Key, T. J. (2010). Fruit and vegetables and cancer risk. British Journal of Cancer 2011, 104(1), 6–11. https://doi.org/10.1038/sj.bjc.6606032
  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2
  • Lee, S. J., & Kwon, Y. A. (2007). Study on fuzzy reasoning application for sensory evaluation of sausages. Food Control, 18(7), 811–816. https://doi.org/10.1016/J.FOODCONT.2006.04.004
  • Li Teh, S., Brutcher, L., Schonberg, B., & Evans, K. (2020). Eleven-year correlation of physical fruit texture traits between computerized penetrometers and sensory assessment in an apple breeding program. HortTechnology, 30(6), 719–724. https://doi.org/10.21273/HORTTECH04698-20
  • López, M. L., Villatoro, C., Fuentes, T., Graell, J., Lara, I., & Echeverría, G. (2007). Volatile compounds, quality parameters and consumer acceptance of ‘Pink Lady®’ apples stored in different conditions. Postharvest Biology and Technology, 43(1), 55–66. https://doi.org/10.1016/J.POSTHARVBIO.2006.07.009
  • Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195–208. https://doi.org/10.1016/J.POSTHARVBIO.2005.04.012
  • Martínez, L. (2007). Sensory evaluation based on linguistic decision analysis. International Journal of Approximate Reasoning, 44(2), 148–164. https://doi.org/10.1016/J.IJAR.2006.07.006
  • Meiselman, H. L. (1993). Critical evaluation of sensory techniques. Food Quality and Preference, 4(1–2), 33–40. https://doi.org/10.1016/0950-3293(93)90311-S
  • Minas, I. S., Tanou, G., & Molassiotis, A. (2018). Environmental and orchard bases of peach fruit quality. Scientia Horticulturae, 235, 307–322. https://doi.org/10.1016/J.SCIENTA.2018.01.028
  • Murray, J. M., Delahunty, C. M., & Baxter, I. A. (2001). Descriptive sensory analysis: Past, present and future. Food Research International, 34(6), 461–471. https://doi.org/10.1016/S0963-9969(01)00070-9
  • Onwezen, M. C., & Bartels, J. (2011). Which perceived characteristics make product innovations appealing to the consumer? A study on the acceptance of fruit innovations using cross-cultural consumer segmentation. Appetite, 57(1), 50–58. https://doi.org/10.1016/J.APPET.2011.03.011
  • Peris, M., & Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638(1), 1–15. https://doi.org/10.1016/J.ACA.2009.02.009
  • Qiu, S., & Wang, J. (2015). Application of sensory evaluation, HS-SPME GC-MS, E-nose, and e-tongue for quality detection in citrus fruits. Journal of Food Science, 80(10), S2296–S2304. https://doi.org/10.1111/1750-3841.13012
  • Ramírez-Rivera, E. D. J., Morales-Carrera, U. A., Limón-Rivera, R., Castillo-Martínez, S. I., Hernández-Salinas, G., Ramírez-Sucre, M. O., & Herrera-Corredor, J. A. (2020). Analytic hierarchy process as an alternative for the selection of vocabularies for sensory characterization and consumer preference. Journal of Sensory Studies, 35(1), e12547. https://doi.org/10.1111/JOSS.12547
  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resources allocation. Mc. Graw Hill. https://doi.org/10.3414/ME10-01-0028
  • Saaty, T. L. (2004). Decision making-the analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13, 1–35. https://doi.org/10.1007/s11518-006-0151-5
  • Saaty, T. L., & Peniwati, K. (2008). Group decision making: Drawing out and reconciling differences. RWS Publications.
  • Shrivastava, C., & Chakraborty, S. (2018). Bread from wheat flour partially replaced by fermented chickpea flour: Optimizing the formulation and fuzzy analysis of sensory data. LWT, 90, 215–223. https://doi.org/10.1016/J.LWT.2017.12.019
  • Sidel, J. L., & Stone, H. (1993). The role of sensory evaluation in the food industry. Food Quality and Preference, 4(1–2), 65–73. https://doi.org/10.1016/0950-3293(93)90314-V
  • Sinija, V. R., & Mishra, H. N. (2011). Fuzzy analysis of sensory data for quality evaluation and ranking of instant green tea powder and granules. Food and Bioprocess Technology, 4(3), 408–416. https://doi.org/10.1007/s11947-008-0163-x
  • Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3(4), 506–516. https://doi.org/10.3945/AN.112.002154
  • song, H., Lu, B., Ye, C., Li, J., Zhu, Z., & Zheng, L. (2020). Fraud vulnerability quantitative assessment of Wuchang rice industrial chain in China based on AHP-EWM and ANN methods. Food Research International, 140, 109805. https://doi.org/10.1016/j.foodres.2020.109805
  • Tadesse, M., & Negese, A. (2020). Land suitability evaluation for sorghum crop by using GIS and AHP techniques in Agamsa sub-watershed, Ethiopia. 6(1). https://doi.org/10.1080/23311932.2020.1743624
  • Taiti, C., Elettra, M., Lanza, M., Azzarello, E., Masi, E., Pandolfi, C., Giordani, E., & Mancuso, S. (2017). Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer’s preference. Eur Food Res Technol, 243, 1917–1931. https://doi.org/10.1007/s00217-017-2898-y
  • Tamaro, D. (1953). Tratado de fruticultura. Gustavo Gili.
  • Tan, J., Gao, X., & Gerrard, D. E. (1999). Application of fuzzy sets and neural networks in sensory analysis. Journal of Sensory Studies, 14(2), 119–138. https://doi.org/10.1111/J.1745-459X.1999.TB00108.X
  • Torrico, D. D., Hutchings, S. C., Ha, M., Bittner, E. P., Fuentes, S., Warner, R. D., & Dunshea, F. R. (2018). Novel techniques to understand consumer responses towards food products: A review with a focus on meat. Meat Science, 144, 30–42. https://doi.org/10.1016/J.MEATSCI.2018.06.006
  • Valero, C., Crisosto, C. H., & Slaughter, D. (2007). Relationship between nondestructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plums. Postharvest Biology and Technology, 44(3), 248–253. https://doi.org/10.1016/J.POSTHARVBIO.2006.12.014
  • Van’t Veer, P., Jansen, M. C., Klerk, M., & Kok, F. J. (2000). Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutrition, 3(1), 103–107. https://doi.org/10.1017/s1368980000000136
  • Vivek, K., Subbarao, K. V., Routray, W., Kamini, N. R., & Dash, K. K. (2020). Application of fuzzy logic in sensory evaluation of food products: A comprehensive study. Food and Bioprocess Technology, 13(1), 1–29. https://doi.org/10.1007/s11947-019-02337-4
  • Wei, Z., Ma, X., Zhan, P., Tian, H., & Li, K. (2020). Flavor quality evaluation system of Xinjiang milk knots by using SOM neural network and the fuzzy AHP. Food Science & Nutrition, 8(4), 2088–2093. https://doi.org/10.1002/FSN3.1501
  • Xi, W., Zhang, Q., Lu, X., Wei, C., Yu, S., & Zhou, Z. (2014). Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chemistry, 164, 219–227. https://doi.org/10.1016/J.FOODCHEM.2014.05.017
  • Ziosi, V., Noferini, M., Fiori, G., Tadiello, A., Trainotti, L., Casadoro, G., & Costa, G. (2008). A new index based on vis spectroscopy to characterise the progression of ripening in peach fruit. Postharvest Biology and Technology, 49(3), 319–329. https://doi.org/10.1016/J.POSTHARVBIO.2008.01.017