1,639
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Genotype x environment interaction and yield stability of normal and biofortified maize inbred lines in stress and non-stress environments

ORCID Icon, , &
Article: 2163868 | Received 24 Aug 2022, Accepted 27 Dec 2022, Published online: 05 Jan 2023

References

  • Abakemal, D., Shimelis, H., & Derera, J. (2016). Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical-highland adapted inbred lines. Euphytica, 209(3), 757–19. https://doi.org/10.1007/s10681-016-1673-7
  • Abera, W., van Rensburg, J. B. J., Labuschagne, M. T., & Maartens, H. (2004). Genotype-environment interactions and yield stability analyses of maize in Ethiopia. South African Journal of Plant and Soil, 21(4), 251–254. https://doi.org/10.1080/02571862.2004.10635058
  • Badu-Apraku, B., Abamu, F. J., Menkir, A., Fakorede, M. A. B., & Obeng-Antwi, K. (2003). Genotype by environment interactions in the regional early variety trials in West and Central Africa. Maydica, 48, 93–104. https://www.webofscience.com/wos/woscc/full-record/WOS:000185935000002?SID=EUW1ED0E63mVpt2R6bnyqd2yHL1HJ
  • Bänziger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. CIMMYT.
  • Bänziger, M., & Long, J. (2000). The potential for increasing the iron and zinc density of maize through plant-breeding. Food and Nutrition Bulletin, 21(4), 397–400. https://doi.org/10.1177/156482650002100410
  • Bhandari, S., & Banjara, M. R. (2015). Micronutrients deficiency, a hidden hunger in Nepal: Prevalence, causes, consequences, and solutions. International Scholarly Research Notices, ID 276469, 1–9. https://doi.org/10.1155/2015/276469
  • Bisawas, A., Sarker, U., Banik, B. R., Rohman, M. M., & Talukder, M. Z. A. (2014). Genotype x environment interaction for grain yield of maize (Zea mays L.) inbreds under salinity stress. Bangladesh Journal of Agricultural Research, 39(2), 293–301. https://doi.org/10.3329/bjar.v39i2.20431
  • Bocianowski, J., Nowosad, K., & Tomkowiak, A. (2019b). Genotype by environment interaction for seed yield of maize hybrids and lines using the AMMI model. Maydica, 64, M13. https://core.ac.uk/download/pdf/237014896.pdf
  • Bruce, W. B., Gregory, O. E., & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53(366), 13–25. https://doi.org/10.1093/jexbot/53.366.13
  • Choukan, R. (2011). Genotype, environment and genotype × environment interaction effects on the performance of maize (Zea mays L.) inbred lines. Crop Breeding Journal, 1, 97–103. https://doi.org/10.22092/CBJ.2011.100349
  • Eberhart, S. A., & Russell, W. A. (1966). Stability Parameters for Comparing Varieties 1. Crop Science, 6(1), 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
  • Ertiro, B. T., Beyene, Y., Das, B., Mugo, S., Olsen, M., Oikeh, S., Juma, C., Labuschagne, M., Prasanna, B. M., & Lübberstedt, T. (2017). Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and non-stress environments in Kenya. Plant Breeding, 136(2), 197–205. https://doi.org/10.1111/pbr.12464
  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Longman.
  • Farshadfar, E., Mahmodi, N., & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5, 1837–1844. https://www.cropj.com/farshadfar_5_13_2011_1837_1844.pdf
  • Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studies in short-season maize. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58(4), 1029–1034. https://doi.org/10.4141/cjps78-157
  • Gasura, E., Setimela, P., & Souta, C. (2015). Evaluation of the performance of sorghum genotypes using GGE biplot. Canadian Journal of Plant Science, 95(6), 1205–1214. https://doi.org/10.4141/cjps-2015-119
  • Gauch, H. G. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier.
  • Gauch, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4), 1488–1500. https://doi.org/10.2135/cropsci2005.07-0193
  • Gauch, H. G., & Zobel, R. W. (1996). AMMI analyses of yield trials. In M. S. Kang & H. G. Gauch (Eds.), Genotype by environment interaction (pp. 85–122). CRC Press.
  • Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 33(1), 1. https://doi.org/10.1007/BF02289676
  • Haruna, A., Boakyewaa, A. G., Buah, S. S., Kanton, R. A., Kudzo, A. I., Seidu, A. M., Kwadwo, O. A., & Tejada Moral, M. (2017). Analysis of genotype by environment interaction for grain yield of intermediate maturing drought tolerant top‐cross maize hybrids under rain‐fed conditions. Cogent Food and Agriculture, 3(1), 1333243. https://doi.org/10.1080/23311932.2017.1333243
  • Hwalla, N., Al Dhaheri, A. S., Radwan, H., Alfawaz, H. A., Fouda, M. A., Al-Daghri, N. M., Zaghloul, S., & Blumberg, J. B. (2017). The prevalence of micronutrient deficiencies and inadequacies in the Middle East and approaches to interventions. Nutrients, 9, 229–256. https://doi.org/10.3390/nu9030229
  • Kiran, K. T., Radhika, K., Kumar, A. A., & Padma, V. (2014). Association studies of grain iron and zinc concentrations with yield and other agronomic traits using F2 populations of two crosses in sorghum (Sorghum bicolor l. Moench). The Journal of Research Angrau, 42, 77–80. https://oar.icrisat.org/9048/#:~:text=Links%3A-,Google%20Scholar,-View%20Statistics
  • Li, Z., Coffey, L., Garfin, J., Miller, N. D., White, M. R., Spalding, E. P., de Leon, N., Kaeppler, S. M., Schnable, P. S., Springer, N. M., Hirsch, C. N., & Lukens, L. (2018). Genotype x environment interactions affecting heterosis in maize. PLoS One, 13(1), e0191321. https://doi.org/10.1371/journal.pone.0191321
  • Mafouasson, H. N. A., Gracen, V., Yeboah, M. A., Ntsomboh-Ntsefong, G., Tandzi, N. L., & Mutengwa, C. (2018). Genotype-by-environment interaction and yield stability of maize single cross hybrids developed from tropical inbred lines. Agronomy, 8(5), 62. https://doi.org/10.3390/agronomy8050062
  • Ma, G., Jin, Y., Li, Y., Zhai, F., Kok, F. J., Jacobsen, E., & Yang, X. (2008). Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 11(6), 632–637. https://doi.org/10.1017/S1368980007001085
  • Makumbi, D., Diallo, A., Kanampiu, F., Mugo, S., & Karaya, H. (2015). Agronomic performance and genotype x environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Science, 55(2), 540–555. https://doi.org/10.2135/cropsci2014.08.0593
  • Maqbool, M. A., Aslam, M., Beshir, A., Khan, M. S., & Tuberosa, R. (2018). Breeding for provitamin A biofortification of maize (Zea mays L). Plant Breeding, 137(4), 451–469. https://doi.org/10.1111/pbr.12618
  • Mebratu, A., Wegary, D., Mohammed, W., Teklewold, A., & Tarekegne, A. (2019). Genotype × environment interaction of quality protein maize hybrids under contrasting management conditions in Eastern and Southern Africa. Crop Science, 59(4), 1576–1589. https://doi.org/10.2135/cropsci2018.12.0722
  • Mohammadi, M., Sharifi, P., & Karimizadeh, R. (2014). Stability analysis of durum wheat genotypes by regression parameters in dryland conditions. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(5), 1049–1056. https://doi.org/10.11118/actaun201462051049
  • Ndhlela, T., Herselman, L., Magorokosho, C., Setimela, P., Mutimaamba, C., & Labuschagne, M. (2014). Genotype x environment interaction of maize grain yield using AMMI biplots. Crop Science, 54(5), 1992–1999. https://doi.org/10.2135/cropsci2013.07.0448
  • Pacheco, A., Rodriguez, F., Alvarado, M., Lopez, M., Crossa, J., & Burgueno, J. (2015). GEA-R (genotype × environment analyses with R for Windows) version 4.0.
  • Pacheco, R. M., Vencovsky, D. J. B., Vencovsky, R., Pinheiro, J. B., & Oliveira, A. B. (2005). Use of supplementary genotypes in AMMI analysis. Theoretical and Applied Genetics, 110(5), 812–818. https://doi.org/10.1007/s00122-004-1822-6
  • Patterson, H. D., & Williams, E. R. (1976). A new class of resolvable incomplete block designs. Biometrika, 63(1), 83–89. https://doi.org/10.1093/biomet/63.1.83
  • Pinthus, M. J. (1973). Estimate of genotypic value: A proposed method. Euphytica, 22(1), 121–123. https://doi.org/10.1007/BF00021563
  • Pixley, K. V., & Bjarnason, M. S. (2002). Stability of grain yield, endosperm modification, and protein quality of hybrid and open-pollinated quality protein maize (QPM) cultivars. Crop Science, 42(6), 1882–1890. https://doi.org/10.2135/cropsci2002.1882
  • Prasanna, B. M., Palacios-Rojas, N., Hossain, F., Muthusamy, V., Menkir, A., Dhliwayo, T., Ndhlela, T., San Vicente, F., Nair, S. K., Vivek, B. S., Zhang, X., Olsen, M., & Fan, X. (2020). Molecular breeding for nutritionally enriched maize: Status and prospects. Frontiers in genetics, 10, 1392. https://doi.org/10.3389/fgene.2019.01392
  • Setimela, P. S., Crossa, J., & Bänziger, M. (2010). Targeting of early to intermediate maize hybrids for yield performance and stability using SREG model. South African Journal of Plant and Soil, 27(3), 207–216. https://doi.org/10.1080/02571862.2010.10639988
  • Sibiya, J., Tongoona, P., Derera, J., & Rij, N. (2012). Genetic analysis and genotype × environment (G × E) for grey leaf spot disease resistance in elite African maize (Zea mays L.) germplasm. Euphytica, 185(3), 349–362. https://doi.org/10.1007/s10681-011-0466-2
  • Siwela, M., Pillay, K., Govender, L., Lottering, S., Mudau, F. N., Modi, A. T., & Mabhaudhi, T. (2020). Biofortified crops for combating hidden hunger in South Africa: Availability, acceptability, micronutrient retention and bioavailability. Foods, 9(6), 815. https://doi.org/10.3390/foods9060815
  • Temple, N. J., Steyn, N. P., Fourie, J., & De Villiers, A. (2011). Price and availability of healthy food: A study in rural South Africa. Nutrition, 27(1), 55–58. https://doi.org/10.1016/j.nut.2009.12.004
  • Tena, E., Goshu, F., Mohamad, H., Tesfa, M., Tesfaye, D., & Seife, A. (2019). Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinarum L.) clones in Ethiopia. Cogent Food and Agriculture, 5(1), 1–14. https://doi.org/10.1080/23311932.2019.1651925
  • VSN International. (2017). Genstat Discovery Software V18.0 (18.0). http://www.genstat.co.uk/
  • Worku, M., Makumbi, D., Beyene, Y., Das, B., Mugo, S., Pixley, K., Bänziger, M., Owino, F., Olsen, M., Asea, G., & Prasanna, B. M. (2016). Grain yield performance and flowering synchrony of CIMMYT’s tropical maize (Zea mays L.) parental inbred lines and single crosses. Euphytica, 211(3), 395. https://doi.org/10.1007/s10681-016-1758-3
  • Wricke, G. (1962). On a method of understanding the biological diversity in field research. Zeitschrift Für Pflanzenzüchtung, 47, 92–146.
  • Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597–605. https://doi.org/10.2135/cropsci2000.403597x
  • Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press.
  • Yan, W., Kang, M. S., Ma, S., Woods, B., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 643–655. https://doi.org/10.2135/cropsci2006.06.0374
  • Yan, W., & Rajcan, I. (2002). Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11–20. https://doi.org/10.2135/cropsci2002.1100
  • Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623–645. https://doi.org/10.4141/P05-169
  • Zaidi, P. H., Selvan, P. M., Sultana, R., Srivastava, A., Singh, A. K., Srinivasan, G., Singh, P. R., & Singh, P. P. (2007). Association between line per se and hybrid performance under excessive soil moisture stress in tropical maize (Zea mays L.). Field Crop Research, 101(1), 117–126. https://doi.org/10.1016/j.fcr.2006.10.002
  • Zewdu, Z., Abebe, T., Mitiku, T., Worede, F., Abebaw, D., Assaye, B., & Atnaf, M. (2020). Performance evaluation and yield stability of upland rice (Oryza sativa L.) varieties in Ethiopia. Cogent Food and Agriculture, 6(1), 1842679. https://doi.org/10.1080/23311932.2020.1842679