1,552
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Replacement of rice-wheat cropping system with alternative diversified systems concerning crop productivity and their impact on soil carbon and nutrient status in soil profile of north-west India

, ORCID Icon, , &
Article: 2167483 | Received 06 Nov 2022, Accepted 07 Jan 2023, Published online: 21 Jan 2023

References

  • Agrawal, R., Kumar, B., Priyanka, K., Narayan, C., Shukla, K., Sarkar, J., & Anshumali, A. (2016). Micronutrient fractionation in coal mine-affected agricultural soils. Bulletin of Environmental Contamination and Toxicology, 96(4), 449–15. https://doi.org/10.1007/s00128-016-1745-3
  • Banjara, T. R., Bohra, J. S., Kumar, S., Singh, T., Shori, A., & Prajapat, K. (2021). Sustainable alternative crop rotations to the irrigated rice-wheat cropping system of Indo-Gangetic Plains of India. In Arch. Agron. Soil. Sci (Vol. 68, (pp. 1-18). https://doi.org/10.1080/03650340.2021.1912324
  • Berger, K. C., & Truog, E. (1939). Boron determination in soils and plants. Industrial & Engineering Chemistry Analytical Edition, 11(10), 540–545. https://doi.org/10.1021/ac50138a007
  • Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4(1), 64–74. https://doi.org/10.1016/j.iswcr.2015.12.001
  • Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J., & Jat, M. L. (2012). Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian Subcontinent: Problems, opportunities, and strategies. Advances in Agronomy, 117, 315–369. https://doi.org/10.1016/B978-0-12-394278-4.00006-4
  • Cheng, K. L., & Bray, R. H. (1951). Determination of calcium and magnesium in soil and plant material. Soil Science, 72(6), 449–458. https://doi.org/10.1097/00010694-195112000-00005
  • Chesnin, L., & Yien, C. H. (1951). Turbidimetric determination of available sulfates. Soil Science Society of America Journal, 15(C), 149–151. https://doi.org/10.2136/sssaj1951.036159950015000C0032x
  • Cremer, M., & Prietzel, J. (2017). Soil acidity and exchangeable base cation stocks under pure and mixed stands of European beech. Douglas Fir and Norway Spruce Plant Soil, 415(1), 393–405. https://doi.org/10.1007/s11104-017-3177-1
  • Das, D. K., Sarkar, A., Dasgupta, S., Das, D. K., & Sarkar, A. (2018). Influence of different organic amendments on Fe, Mn, Cu and Zn availability in Indian soils. International Journal of Current Microbiology and Applied Sciences, 7(5), 2435–2445. https://doi.org/10.20546/ijcmas.2018.705.280
  • Dhaliwal, S. S., Naresh, R. K., Mandal, A., Walia, M. K., Gupta, R. K., Singh, R., & Dhaliwal, M. K. (2019a). Effect of manures and fertilizers on soil physical properties build-up of macro and micronutrients and uptake in soil under different cropping systems: A review. Journal of Plant Nutrition, 42(20), 2873–2900. https://doi.org/10.1080/01904167.2019.1659337
  • Dhaliwal, S. S., Naresh, R. K., Walia, M. K., Gupta, R. K., Mandal, A., & Singh, R. (2019b). Long-term effects of intensive rice–wheat and agroforestry based cropping systems on build-up of nutrients and budgets in alluvial soils of Punjab. Archives of Agronomy and Soil Science, 66(3), 330–342. https://doi.org/10.1080/03650340.2019.1614564
  • Dhaliwal, S. S., Sharma, V., Kaur, J., Shukla, A. K., Hossain, A., Abdel-Hafez, S. H., Gaber, A., Sayed, S., & Singh, V. K. (2021a). The pedospheric variation of DTPA-extractable Zn, Fe, Mn, Cu and other physicochemical characteristics in major soil orders in existing land use systems of Punjab, India. Sustainability, 14(1), 29. https://doi.org/10.3390/su14010029
  • Dhaliwal, S. S., Sharma, S., Sharma, V., Shukla, A. K., Walia, S. S., Alhomrani, M., Gaber, A., Toor, A. S., Verma, V., Randhawa, M. K., Pandher, L. K., Singh, P., & Hossain, A. (2021b). Long-term integrated nutrient management in the maize–wheat cropping system in alluvial soils of north-western India: Influence on soil organic carbon, microbial activity and nutrient status. Agronomy, 11(11), 2258. https://doi.org/10.3390/agronomy11112258
  • Dhaliwal, S. S., Shukla, A. K., Sharma, V., Behera, S. K., Choudhary, O. P., Chaudhari, S. K., Prakash, C., Kumar, A., Patra, A. K., Sikanyia, Y., & Tripathi, A. (2020). Status of suplhur and micronutrients in soils of Punjab – blockwise atlas. Department of Soil Science, Punjab Agricultural University, Ludhiana and ICAR-Indian Institute of Soil Science, Bhopal.
  • Dhumgond, P., Prakash, S. S., Srinivasamurthy, C. A., & Bhaskar, S. (2017). Soil fertility status as influenced by different cropping systems in hill zone acid soils of Karnataka. International Journal of Current Microbiology and Applied Sciences, 6(4), 670–678. https://doi.org/10.20546/ijcmas.2017.604.082
  • Fageria, N. K. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43(16), 2063–2113. https://doi.org/10.1080/00103624.2012.697234
  • Gan, Y., Hamel, C., O’Donovan, J. T., Cutforth, H., Zentner, R. P., Campbell, C. A., Niu, Y., & Poppy, L. (2015). Diversifying crop rotations with pulses enhances system productivity. Scientific Reports, 5(1), 1–14. https://doi.org/10.1038/srep14625
  • Ghosh, P. K., Hazra, K. K., Venkatesh, M. S., Praharaj, C. S., Kumar, N., Nath, C. P., Singh, U., & Singh, S. S. (2020). Grain legume inclusion in cereal–cereal rotation increased base crop productivity in the long run. Experimental Agriculture, 56(1), 142–158. https://doi.org/10.1017/S0014479719000243
  • Gurr, G. M., Lu, Z., Zheng, X., Xu, H., Zhu, P., Chen, G., Yao, X., Cheng, J., Zhu, Z., Catindig, J. L., Villareal, S., Van Chien, H., Cuong, L. Q., Channoo, C., Chengwattana, N., Lan, L. P., Hai, L. H., Chaiwong, J., Nicol, H. I., … Heong, K. L. (2016). Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2(3), 1–4. https://doi.org/10.1038/nplants.2016.14
  • Haque, K. S., Eberbach, P. L., Weston, L. A., Dyall-Smith, M., & Howitt, J. A. (2016). Variable impact of rice (Oryza sativa) on soil metal reduction and availability of pore water Fe 2+ and Mn 2+ throughout the growth period. Chemistry and Ecology, 32(2), 182–200. https://doi.org/10.1080/02757540.2015.1122000
  • Hazra, K. K., Singh, S. S., Nath, C. P., Borase, D. N., Kumar, N., Parihar, A. K., & Swain, D. K. (2018). Adaptation mechanisms of winter pulses through rhizospheric modification in mild-alkaline soil. National Academy Science Letters, 41(4), 193–196. https://doi.org/10.1007/s40009-018-0648-8
  • Hazra, K. K., Venkatesh, M. S., Ghosh, P. K., Ganeshamurthy, A. N., Kumar, N., Nadarajan, N., & Singh, A. B. (2014). Long-term effect of pulse crops inclusion on soil–plant nutrient dynamics in puddled rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system on an inceptisol of Indo-Gangetic Plain zone of India. Nutrient Cycling in Agroecosystems, 100(1), 95–110. https://doi.org/10.1007/s10705-014-9629-6
  • Jackson, M. L. (1973). A manual of methods useful for instruction and research in soil chemistry, physical chemistry of soil fertility and soil genesis. Soil chemical analysis advanced course. Prentice Hall of India Pvt. Ltd., New Delhi, 498.
  • Khanday, M., Wani, J. A., Ram, D., & Chand, S. (2017). Available nutrients status of soils of forest growing areas of Ganderbal district of Kashmir valley. International Journal of Chemical Studies, 6, 177–180. .
  • Khanday, M., Wani, J. A., Ram, D., & Kumar, S. (2018). Depth wise distribution of available nutrients of soils of horticulture growing areas of Ganderbal district of Kashmir valley. Journal of Pharmacognosy and Phytochemistry, 7(1), 19–22. .
  • Kunlanit, B. (2018). Distribution of some macronutrients in soil profiles as influenced by land use changes. Khon Kaen Agriculture Journal, 46, 1–161.
  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test method for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Liu, K., Bandara, M., Hamel, C., Knight, J. D., & Gan, Y. (2020). Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Research, 248, 107657. https://doi.org/10.1016/j.fcr.2019.107657
  • Mandal, A., Toor, A. S., & Dhaliwal, S. S. (2018). Effect of land-uses on physico-chemical properties and nutrient status of surface (0-15 cm) and sub-surface (15-30 cm) layers in soils of South-Western Punjab, India. International Journal of Current Microbiology and Applied Sciences, 7(6), 2659–2671. https://doi.org/10.20546/ijcmas.2018.706.315
  • Meena, A. L., Pandey, R. N., Kumar, D., Dotaniya, M. L., Sharma, V. K., Singh, G., Meena, B. P., Kumar, A., & Bhanu, C. (2020). Impact of 12-year-long rice based organic farming on soil quality in terms of soil physical properties, available micronutrients and rice yield in a typic Ustochrept soil of India. Communications in Soil Science and Plant Analysis, 51(18), 2331–2348. https://doi.org/10.1080/00103624.2020.1822386
  • Merwin, H. D., & Peech, M. (1950). Exchangeability of soil potassium in sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cations. Soil Science Society of America Journal, 15(C), 125–128. https://doi.org/10.2136/sssaj1951.036159950015000C0026x
  • Moharana, P. C., Naitam, R. K., Verma, T. P., Meena, R. L., Kumar, S., Tailor, B. L., Singh, R. S., Singh, S. K., & Samal, S. K. (2017). Effect of long-term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India. Archives of Agronomy and Soil Science, 63(12), 1661–1675. 1661-75. https://doi.org/10.1080/03650340.2017.1304637.
  • Narender, R. S., Yadav, K., & Yadav, H. K. (2016). Fractionation and distribution of manganese in different cropping system and their relationship with soil properties in Haryana. Journal of Ecology and Environment, 34(4D), 2533–2540. https://www.researchgate.net/publication/323797546
  • Nawaz, A., Farooq, M., Nadeem, F., Siddique, K. H. M., & Lal, R. (2019). Rice–wheat cropping systems in South Asia: Issues, options and opportunities. Crop. Crop and Pasture Science, 70(5), 395. https://doi.org/10.1071/cp18383
  • Olsen, S. R., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Prasad, D. A. S. H. A. R. A. T. H., Rana, Babu, D. S., Choudhary, S., & Rajpoot, A. K. (2016). Influence of tillage practices and crop diversification on productivity and soil health in maize (Zea mays L.)/Soybean (Glycine max L.) based cropping systems. Indian Journal of Agricultural Sciences, 86(1), 96–102. https://www.researchgate.net/publication/291352423
  • Pries, C. E. H., Sulman, B. N., West, C O., Neill, C., Poppleton, E., Porras, R. C., Castanha, C., Zhu, B., Wiedemeier, D. B., & Torn, M. S. (2018). Root litter decomposition slows with soil depth. Soil Biology and Biochemistry, 125, 103–114. https://doi.org/10.1016/j.soilbio.2018.07.002
  • Puniya, R., Pandey, P. C., Bisht, P. S., Singh, D. K., & Singh, A. P. (2019). Effect of long-term nutrient management practices on soil micronutrient concentrations and uptake under a rice–wheat cropping system. The Journal of Agricultural Science, 157(3), 226–234. https://doi.org/10.1017/S0021859619000509
  • Rafique, N., & Tariq, S. R. (2016). Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. Environmental Monitoring and Assessment, 188(5), 1–10. https://doi.org/10.1007/s10661-016-5309-0
  • Rahman, N., & Schoenau, J. (2021). Response of different crop cultivars to micronutrient fertilization and relationship to rhizosphere soil properties. Communications in Soil Science and Plant Analysis, 52(11), 1286–1300. https://doi.org/10.1080/00103624.2021.1879126
  • Rajneesh, S., Sankhyan, R. P., Kumar, N. K R., & Kumar, R. (2017). Long-term effect of fertilizers and amendments on depth-wise distribution of available NPK micronutrient cations, productivity, and NPK uptake by maize-wheat system in an acid alfisol of northwestern Himalayas. Communications in Soil Science and Plant Analysis, 48(18), 2193–2209. https://doi.org/10.1080/00103624.2017.1408816
  • Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 397–409. http://dx.doi.org/10.4067/S0718-95162015005000036
  • Richard, L. A. (1954). Determination of the Properties of Saline and Alkali Soils. In Diagnosis and improvement of saline and alkali soils. Agriculture Hand Book No. 60. USDA.
  • Rosemary, F., Mishra, U., Mishra, U., Mishra, U., & Mishra, U. (2017). Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150, 53–61. https://doi.org/10.1016/j.catena.2016.10.017
  • Rutkowska, B., Szulc, W., Sosulski, T., & Stępień, W. (2014). Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant, Soil and Environment, 60(5), 198–203. https://doi.org/10.17221/914/2013-PSE
  • Sandeep, S., Singh, P., & Sodhi, G. P. S. (2020). Soil organic carbon and biological indicators of uncultivated vis-à-vis intensively cultivated soils under rice–wheat and cotton–wheat cropping systems in South-Western Punjab. Carbon Management, 11(6), 681–695. https://doi.org/10.1080/17583004.2020.1840891
  • Sandhu, P. S., Walia, S. S., Gill, R. S., & Dheri, G. S. (2020). Thirty-one years study of integrated nutrient management on physico-chemical properties of soil under rice–wheat cropping system. Communications in Soil Science and Plant Analysis, 51(12), 1641–1657. 1641-57. https://doi.org/10.1080/00103624.2020.1791156.
  • Sharma, U., & Kumar, P. (2016). Micronutrient research in India: Extent of deficiency, crop responses and future challenges. International Journal of Advanced Research, 4(4), 1402–1406. https://doi.org/10.21474/IJAR01/234
  • Sharma, S., Padbhusan, R., & Kumar, U. (2019). Integrated nutrient management in rice -wheat rice–wheat cropping system: An evidence on sustainability in the Indian subcontinent through meta-analysis. Agronomy, 9(2), 71. https://doi.org/10.3390/agronomy9020071
  • Sharma, M., Sharma, Y. K., & Dotaniya, M. L. (2014). Effect of press mud and FYM application with zinc sulphate on yield of hybrid rice. Journal of Agriculture and Environmental Sciences, 1(1), 8. . https://www.researchgate.net/publication/270760602
  • Shweta, M. M., & Malik, M. (2017). Improving wheat productivity in rice-wheat cropping system through crop establishment methods. International Journal of Pure & Applied Bioscience, 5(3), 575–578. https://doi.org/10.18782/2320-7051.2751
  • Singh, P., & Benbi, D. (2021). Physical and chemical stabilization of soil organic matter in cropland ecosystems under rice–wheat, maize–wheat and cotton–wheat cropping systems in northwestern India. Carbon Management, 12(6), 1–19. https://doi.org/10.1080/17583004.2021.1992505
  • Singh, G., Singh, P., & Sodhi, G. P. S. (2021). Assessment and analysis of agricultural technology adoption in cotton (Gossypium hirsutum L.) cultivation in South-Western Punjab. Agricultural Research Journal, 58(2), 324–333. https://doi.org/10.5958/2395-146X.2021.00047.8
  • Tekin, S., Yazar, A., & Barut, H. (2017). Comparison of wheat-based rotation systems and monocropping systems under dryland Mediterranean conditions. International Journal of Agricultural and Biological Engineering, 10(5), 203–213.
  • Venkatesh, M. S., Hazra, K. K., Ghosh, P. K., Khuswah, B. L., Ganeshamurthy, A. N., Ali, M., Singh, J., & Mathur, R. S. (2017). Long–term effect of crop rotation and nutrient management on soil–plant nutrient cycling and nutrient budgeting in Indo–Gangetic plains of India. Archives of Agronomy and Soil Science, 63(14), 2007–2022. 2007-22. https://doi.org/10.1080/03650340.2017.1320392.
  • Venkatesh, M. S., Hazra, K. K., Ghosh, P. K., Praharaj, C. S., & Kumar, N. (2013). Long–term effect of pulses and nutrient management on soil carbon sequestration in Indo–Gangetic plains of India. Canadian Journal of Soil Science, 93(1), 127–136. https://doi.org/10.4141/cjss2012-072
  • Verma, T. P., Moharana, P. C., Naitam, R. K., Meena, R. L., Kumar, S., Singh, R., Tailor, B. L., Singh, R. S., & Singh, S. K. (2017). Impact of cropping intensity on soil properties and plant available nutrients in hot arid environment of North-Western India. Journal of Plant Nutrition, 40(20), 2872–2888. https://doi.org/10.1080/01904167.2017.1381732
  • Walkley, A., & Black, C. A. (1934). An experiment of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 27–38. https://doi.org/10.1097/00010694-193401000-00003
  • Wani, S. A., Najar, G. R., & Padder, B. A. (2017). Altitudinal and depthwise variation of soil physico-chemical properties and available nutrients of pear orchards in Jammu & Kashmir, India. Chemical Society Reviews, 6, 1638–1645. https://doi.org/10.22271/phyto.2020.v9.i6ae.13968