3,280
Views
3
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Zero Hunger by 2030 – Are we on track? Climate variability and change impacts on food security in Africa

ORCID Icon & ORCID Icon
Article: 2171830 | Received 01 Sep 2022, Accepted 19 Jan 2023, Published online: 01 Feb 2023

References

  • Affoh, R., Zheng, H., Dangui, K., & Dissani, B. M. (2022). The impact of climate variability and change on food security in Sub-Saharan Africa: Perspective from panel data analysis. Sustainability (Switzerland), 14, 2. https://doi.org/10.3390/su14020759
  • Ajayi, O. O., Mokryani, G., & Edun, B. M. (2022). Sustainable energy for national climate change, food security, and employment opportunities: Implications for Nigeria. Fuel Communications, 10, 100045. https://doi.org/10.1016/j.jfueco.2021.100045
  • Al-Mulali, U., & Che Sab, C. N. B. (2018). Electricity consumption, CO2 emission, and economic growth in the Middle East. Energy Sources, Part B: Economics, Planning, and Policy, 13(5), 257–21. https://doi.org/10.1080/15567249.2012.658958
  • Alvi, S., Roson, R., Sartori, M., & Jamil, F. (2021). An integrated assessment model for food security under climate change for South Asia. Heliyon, 7(4), e06707. https://doi.org/10.1016/j.heliyon.2021.e06707
  • Areliano, M., & Boverb, O. (1995). Another look at the instrumental variable estimation of error-components models. 68(August 1990), 29–51. https://doi.org/10.1016/0304-4076(94)01642-D
  • Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: monte carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277–297. https://doi.org/10.2307/2297968
  • Asare-Nuamah, P. (2021). Climate variability, subsistence agriculture and household food security in rural Ghana. Heliyon, 7(4), e06928. https://doi.org/10.1016/J.HELIYON.2021.E06928
  • Badolo, F., & Somlanare, K. R. (2013). Rainfall shocks, food prices vulnerability and food security: Evidence for Sub- Saharan African countries (pp. 1–20). https://www.afdb.org/fileadmin/uploads/afdb/Documents/Knowledge/AEC%202012%20-%20Rainfall%20Shocks%20Food%20Prices%20Vulnerability%20and%20Food%20Security-Evidence%20for%20Sub-Saharan%20African%20Countries.pdf
  • Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models (pp. 87). https://doi.org/10.1016/S0304-4076(98)00009-8
  • Bourgault, M., Brand, J., Tausz-Posch, S., Armstrong, R. D., O’Leary, G. L., Fitzgerald, G. J., & Tausz, M. (2017). Yield, growth, and grain nitrogen response to elevated CO2 in six lentils (Lens culinaris) cultivars grown under Free Air CO2 Enrichment (FACE) in a semi-arid environment. European Journal of Agronomy, 87, 50–58. https://doi.org/10.1016/j.eja.2017.05.003
  • Bouznit, M., & Pablo-Romero, M. D. P. (2016). CO2 emission and economic growth in Algeria. Energy Policy, 96, 93–104. https://doi.org/10.1016/j.enpol.2016.05.036
  • Chakrabarti, K. D. (2015 September). In: Challenges in designing counterinsurgency policy: An institutionalist perspective. 50.
  • Dasgupta, A., & Dasgupta, P. (2017). Socially embedded preferences, environmental externalities, and reproductive rights. Population and Development Review, 43(3), 405–441. https://doi.org/10.1111/padr.12090
  • Dessie, W., & Ademe, A. S. (2017). Training for creativity and innovation in small enterprises in Ethiopia wondifraw mihret dessie and. International Journal of Training and Development. https://doi.org/10.1111/ijtd.12107
  • FAO. (2015). Climate change and food security: Risks and responses (pp. 110). FAO. 978-92-5-108998-9. https://www.fao.org/3/a-i5188e.pdf
  • FAO.,IFAD., UNICEF., & WHO. (2020). The State of Food Security and Nutrition in The World: Transforming Food Systems For Affordable Healthy Diets. Rome FAO. IEEE journal of selected topics in applied earth observations and remote sensing (pp. 320). 978-92-5-132901-6.
  • FAO & WFP. (2020). Impacts of COVID-19 on food security and nutrition: Developing effective policy responses to address the hunger and malnutrition pandemic. In HLPE issues paper (Issue September).
  • Fischer, S., Hilger, T., Piepho, H. P., Jordan, I., & Cadisch, G. (2019). Do we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food crops. The Science of the Total Environment, 658, 405–415. https://doi.org/10.1016/J.SCITOTENV.2018.12.181
  • Fuller, T. L., Sesink Clee, P. R., Njabo, K. Y., Tróchez, A., Morgan, K., Meñe, D. B., Anthony, N. M., Gonder, M. K., Allen, W. R., Hanna, R., & Smith, T. B. (2018). Climate warming causes declines in crop yields and lowers school attendance rates in Central Africa. Science of the Total Environment, 610–611, 503–510. https://doi.org/10.1016/j.scitotenv.2017.08.041
  • Gebre, G. G., & Rahut, D. B. (2021). Prevalence of household food insecurity in East Africa: Linking food access with climate vulnerability. Climate Risk Management, 33, 100333. https://doi.org/10.1016/J.CRM.2021.100333
  • GNAFC, & FSIN. (2021). Global Report on Food Crises: Joint Analysis for Better Decisions.
  • Harris, F., Amarnath, G., Joy, E. J., Dangour, A. D., & Green, R. F. (2022). Climate-related hazards and Indian food supply: Assessing the risk using recent historical data. Global Food Security, 33, 100625. https://doi.org/10.1016/j.gfs.2022.100625
  • Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. Stata Journal, 7(3), 281–312. https://doi.org/10.1177/1536867x0700700301
  • Holtz-Eakin, D., Newey, W., & Rosen, H. S. (1988). Estimating vector autoregressions with panel data. Econometrica, 56(6), 1371–1395. https://doi.org/10.2307/1913103
  • IFAD, F. A. O., & WHO, U. N. I. C. E. F. (2020). The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets https://doi.org/10.4060/ca9692en
  • IPCC. (1995). Climate Change 1995: The IPCC second assessment report. In Robert, T. Watson, M.C., Zinyowera, & Richard, H. Moss (Eds.), Scientific-Technical Analysis of Impacts, Adaptations, and Mitigation of Climate Change (pp. 399–426). IPCC.
  • IPCC. (2014). Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B (pp. 1–32). Cambridge University Press. https://doi.org/10.1017/cbo9780511976988.002
  • IPCC. (2018). Global warming? Nature. https://doi.org/10.1038/291285a0
  • IPCC. (2022). The evidence is clear: The time for action is now. We can halve emissions by 2030. IPCC Working Group III. Vol. 151
  • Kader, A. A. (2005). Increasing food availability by reducing postharvest losses of fresh produce. Acta Horticulturae, 682(682), 2169–2176. https://doi.org/10.17660/ActaHortic.2005.682.296
  • Khandelwal, S., Parwez, S., & Mehra, M. (2022). Climate change: Effects on health and nutrition. Reference Module in Food Science. https://doi.org/10.1016/B978-0-12-821848-8.00131-1
  • Kinda, S. R., Badolo, F., & Tajani, F. (2019). Does rainfall variability matter for food security in developing countries? Cogent Economics and Finance, 7(1), 1. https://doi.org/10.1080/23322039.2019.1640098
  • Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts crop productivity in Africa and South Asia. Environmental Research Letters, 7(3), 034032. https://doi.org/10.1088/1748-9326/7/3/034032
  • Leisner, C. P. (2020). Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Science, 293, 110412. https://doi.org/10.1016/J.PLANTSCI.2020.110412
  • Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22. https://doi.org/10.1093/BIOMET/73.1.13
  • Lloyd, S. J., Sari Kovats, R., & Chalabi, Z. (2011). Climate change, crop yields, and undernutrition: Development of a model to quantify the impact of climate scenarios on child undernutrition. Environmental Health Perspectives, 119(12), 1817–1823. https://doi.org/10.1289/ehp.1003311
  • Lobell, D. B., & Field, C. B. (2008). Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Global Change Biology, 14(1), 39–45. https://doi.org/10.1111/J.1365-2486.2007.01476.X
  • Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. ELife, (2014, 3. https://doi.org/10.7554/ELIFE.02245
  • Mekonnen, A., Tessema, A., Ganewo, Z., & Haile, A. (2021). Climate change impacts household food security and farmers’ adaptation strategies. Journal of Agriculture and Food Research, 6, 100197. https://doi.org/10.1016/J.JAFR.2021.100197
  • Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate change and global food systems: potential impacts on food security and undernutrition. Annual Review of Public Health, 38(1), 259–277. https://doi.org/10.1146/annurev-publhealth-031816-044356
  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D. B., Bloom, A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, G., Hasegawa, T., Holbrook, N. M., Nelson, R. L., Ottman, M. J., Raboy, V., Sakai, H., Sartor, K. A., Schwartz, J., Seneweera, S., Tausz, M., & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139–142. https://doi.org/10.1038/nature13179
  • Nelson, R., Kokic, P., Crimp, S., Martin, P., Meinke, H., Howden, S. M., de Voil, P., & Nidumolu, U. (2010). The vulnerability of Australian rural communities to climate variability and change: Part II-Integrating impacts with adaptive capacity. Environmental Science and Policy, 13(1), 18–27. https://doi.org/10.1016/j.envsci.2009.09.007
  • OECD/FAO. (2016). OECD-FAO Agricultural Outlook 2016‑2025. OECD Publishing. https://doi.org/10.1787/agr_outlook-2016-en
  • Omar, M. E. D. M., Moussa, A. M. A., & Hinkelmann, R. (2021). Impacts of climate change on water quantity, water salinity, food security, and socioeconomy in Egypt. Water Science and Engineering, 14(1), 17–27. https://doi.org/10.1016/j.wse.2020.08.001
  • Painter, S. C., Popova, E., & Roberts, M. J. (2022). An introduction to East African coastal current ecosystems: At the frontier of climate change and food security. Ocean and Coastal Management, 216(November2021), 105977. https://doi.org/10.1016/j.ocecoaman.2021.105977
  • Papke, L., Wooldridge, J., Papke, L., & Wooldridge, J. (2005). A computational trick for delta-method standard errors. Economics Letters, 86(3), 413–417. https://econpapers.repec.org/RePEc:eee:ecolet:v:86:y:2005:i:3:p:413-417 https://doi.org/10.1016/j.econlet.2004.07.022
  • Roodman, D. (2009). How to Do xtabond2: An Introduction to Difference and System GMM in Stata, 1, 86–136. https://doi.org/10.1177/1536867X0900900106
  • Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 151(4), 449–460. https://doi.org/10.1016/J.AGRFORMET.2010.12.002
  • Singh, S., Gupta, A. K., & Kaur, N. (2012). Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. The Scientific World Journal, 2012, 1–9. https://doi.org/10.1100/2012/485751
  • Singh, R. K., Joshi, P. K., Sinha, V. S. P., & Kumar, M. (2022). Indicator-based assessment of food security in SAARC nations under the influence of climate change scenarios. Future Foods, 5(October), 2021. https://doi.org/10.1016/j.fufo.2022.100122
  • Stuch, B., Alcamo, J., & Schaldach, R. (2020). Projected climate change impacts on mean and year-to-year variability of the yield of key smallholder crops in Sub-Saharan Africa. Climate and Development, 1–15. https://doi.org/10.1080/17565529.2020.1760771
  • SWAC, OECD Secretariat, RPCA. (2016). Food Issues: DeMOGraPHiC, UrBaN, MiGraTiON, and Security Challenges (Vol. 2, pp. 33). RPCA. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiYh_OE7-X8AhUIgv0HHY_bBg8QFnoECAwQAQ&url=https%3A%2F%2Fwww.food-security.net%2Fen%2Fdocument%2Fmaps-facts-food-issues%2F&usg=AOvVaw0lumfWlrhYoDmrZkKakrrn
  • Thorlakson, T., & Neufeldt, H. (2012). Reducing subsistence farmers’ vulnerability to climate change: Evaluating the potential contributions of agroforestry in western Kenya. Agriculture and Food Security, 1(1). https://doi.org/10.1186/2048-7010-1-15
  • Thornton, P. K., & Herrero, M. (2015). Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nature Climate Change, 5(9), 830–836. https://doi.org/10.1038/nclimate2754
  • Verschuur, J., Li, S., Wolski, P., & Otto, F. E. L. (2021). Climate change as a driver of food insecurity in the 2007 Lesotho-South Africa drought. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-83375-x
  • Wang, J. (2010). Food security, food prices and climate change in China: A dynamic panel data analysis. Agriculture and Agricultural Science Procedia, 1, 321–324. https://doi.org/10.1016/j.aaspro.2010.09.040
  • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817. https://doi.org/10.2307/1912934
  • White, Halbert. (1984). Asymptotic Theory for Econometricians: Revised Edition (Economic Theory, Econometrics, and Mathematical Economics) (Revised ed.). Emerald Publishing Limited. 978-0127466521. http://www.academicpress.com
  • Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Van Der Mensbrugghe, D., Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Van Meijl, H., & Willenbockel, D. (2015). Climate change impacts agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 10(8), 85010. https://doi.org/10.1088/1748-9326/10/8/085010
  • Wossen, T., Alene, A., Abdoulaye, T., Feleke, S., Rabbi, I. Y., & Manyong, V. (2018). Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in nigeria. Journal of Agricultural Economics. https://doi.org/10.1111/1477-9552.12296
  • WU, J. Z., Zhang, J., GE, Z. M., Xing, L. W., HAN, S. Q., Shen, C., & Kong, F. T. (2021). Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 20(1), 289–299. https://doi.org/10.1016/S2095-3119(20)63244-0
  • Zhao, C. X., He, M. R., Wang, Z. L., Wang, Y. F., & Lin, Q. (2009). Effects of different water availability at the post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biologies, 332(8), 759–764. https://doi.org/10.1016/J.CRVI.2009.03.003
  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114
  • Zhu, C., Kobayashi, K., Loladze, I., Zhu, J., Jiang, Q., Xu, X., Liu, G., Seneweera, S., Ebi, K. L., Drewnowski, A., Fukagawa, N. K., & Ziska, L. H. (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances, 4(5), 1–9. https://doi.org/10.1126/sciadv.aaq1012