4,147
Views
1
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Production, productivity, quality and chemical composition of Ethiopian coffee

ORCID Icon
Article: 2196868 | Received 19 Nov 2022, Accepted 26 Mar 2023, Published online: 05 Apr 2023

References

  • Alemu, Z. G., Oosthuizen, K., & Van Schalkwyk, H. D. (2003). Contribution of agriculture in the Ethiopian economy: A time-varying parameter approach. Agrekon, 42(1), 29–27. https://doi.org/10.1080/03031853.2003.9523608
  • Allred, K. F., Yackley, K. M., Vanamala, J., & Allred, C. D. (2009). Trigonelline is a Novel Phytoestrogen in Coffee Beans. The Journal of Nutrition, 139(10), 1833–1838. https://doi.org/10.3945/jn.109.108001
  • Alonso-Salces, R. M., Serra, F., Reniero, F., & Héberger, K. (2009). Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. Journal of Agricultural and Food Chemistry, 57(10), 4224–4235. https://doi.org/10.1021/jf8037117
  • Anderson, K. A., & Smith, B. W. (2002). Chemical profiling to differentiate geographic growing origins of coffee. Journal of Agricultural and Food Chemistry, 50(7), 2068–2075. https://doi.org/10.1021/jf011056v
  • Antonio, A. G., Moraes, R. S., Perrone, D., Maia, L. C., Santos, K. R. N., Iório, N. L. P., & Farah, A. (2010). Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chemistry, 118(3), 782–788. https://doi.org/10.1016/j.foodchem.2009.05.063
  • Ashihara, H., & Crozier, A. (2001). Caffeine: A well known but little mentioned compound in plant science. Trends in Plant Science, 6(9), 407–413. https://doi.org/10.1016/S1360-1385(01)02055-6
  • Avelino, J., Barboza, B., Davrieux, F., & Guyot, B. (2007). Shade effects on sensory and chemical characteristics of coffee from very high altitude plantations in Costa Rica. In: 2nd International Symposium on Multi-strata Agroforestry Systems with Perennial Crops: Making ecosystem services count for farmers, consumers, and the environment, 17–21 September 2007, Turrialba, Costa Rica.
  • Ayele, A., Worku, M., & Bekele, Y. (2021). Trend, instability and decomposition analysis of coffee production in Ethiopia (1993–2019). Heliyon, 7(9), e08022. https://doi.org/10.1016/j.heliyon.2021.e08022
  • Badmos, S. O. (2020). Comparison of chlorogenic acid and lipid profiles in green and roasted coffee beans. PhD Thesis, Jacobs University,
  • Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technology, 7(12), 3493–3503. https://doi.org/10.1007/s11947-014-1349-z
  • Bastian, F., Hutabarat, O. S., Dirpan, A., Nainu, F., Harapan, H., Emran, T. B., & Simal-Gandara, J. (2021). From plantation to cup: Changes in bioactive compounds during coffee processing. Foods, 10(11), 2827. https://doi.org/10.3390/foods10112827
  • Belitz, H. -D., Grosch, W., & Schieberle, P. (2009). Coffee, tea, cocoa. In H.-D. Belitz, W. Grosch, & P. Schieberle (Eds.), Food chemistry, 4th ed (pp. 938–951). Springer-Verlag.
  • Bertrand, B., Villarreal, D., Laffargue, A., Posada, H., Lashermes, P., & Dussert, S. (2008). Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. Journal of Agricultural and Food Chemistry, 56(6), 2273–2280. https://doi.org/10.1021/jf073314f
  • Bhattacherjee, A., & Datta, A. (2015). Mechanism of antiglycating properties of syringic and chlorogenic acids in vitro glycation system. Food Research International, 77, 540–548. https://doi.org/10.1016/j.foodres.2015.08.025
  • Bhattarai, R. R., Al-Ali, H., & Johnson, S. K. (2022). Extraction, isolation and nutritional quality of coffee protein. Foods, 11(20), 3244. https://doi.org/10.3390/foods11203244
  • Boot, W. J. (2011). Ethiopian coffee buying manual: Practical guidelines for the purchasing and importing of Ethiopian specialty coffee beans. USAID/Ethiopia’s Agribusiness and Trade Expansion. Fintrac Inc.
  • Buffo, R. A., & Cardelli-Freire, C. (2004). Coffee flavour: An overview. Flavour and Fragrance Journal, 19(2), 99–104. https://doi.org/10.1002/ffj.1325
  • Bytof, G., Knopp, S. -E., Schieberle, P., Teutsch, I., & Selmar, D. (2005). Influence of processing on the generation of γ-aminobutyric acid in green coffee beans. European Food Research and Technology, 220(3–4), 245–250. https://doi.org/10.1007/s00217-004-1033-z
  • Calligaris, S., Munari, M., Arrighetti, G., & Barba, L. (2009). Insights into the physicochemical properties of coffee oil. European Journal of Lipid Science and Technology, 111(12), 1270–1277. https://doi.org/10.1002/ejlt.200900042
  • Campos, G. A. F., Kruizenga, J. G. K. T., Sagu, S. T., Schwarz, S., Homann, T., Taubert, A., & Rawel, H. M. (2022). Effect of the post-harvest processing on protein modification in green coffee beans by phenolic compounds. Foods, 11(2), 159. https://doi.org/10.3390/foods11020159
  • Cavin, C., Holzhaeuser, D., Scharf, G., Constable, A., Huber, W. W., & Schilter, B. (2002). Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food and Chemistry Toxicology, 40(8), 1155–1163.
  • Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57(Part A), 20–30.
  • Clifford, M. N. (1985). Chemical and physical aspects of green coffee and coffee products. In M. N. Clifford & K. C. Willson (Eds.), Coffee botany, biochemistry, and production of beans and beverage (pp. 305–374). Croom Helm.
  • Comai, S., Bertazzo, A., Bailoni, L., Zancato, M., Costa, C. V. L., & Allegri, G. (2007). The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chemistry, 100(4), 1350–1355.
  • Cong, S., Dong, W., Zhao, J., Hu, R., Long, Y., & Chi, X. (2020). Characterization of the lipid oxidation process of robusta green coffee beans and shelf life prediction during accelerated storage. Molecules, 25(5), 1157.
  • Dart, S. K., & Nursten, H. E. (1985). Volatile components. In R. J. Clarke & R. Macrae (Eds.), Coffee (pp. 223–265). Springer.
  • Davis, A. P. (2011). Psilanthus mannii, the type species of Psilanthus, transferred to Coffea. Nordic Journal of Botany, 29(4), 471–472.
  • Davis, P. G., Schmidt, B., Roberts, R. S., Doyle, L. W., Asztalos, E., & Haslam, R. (2010). Caffeine for apnea of prematurity trial: Benefits may vary in subgroups. The Journal of Pediatrics, 156(3), 382–387.
  • De Maria, C., Trugo, L., Neto, F. A., Moreira, R., & Alviano, C. (1996). Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chemistry, 55(3), 203–207.
  • Demirbag, D., Ozdemir, F., & Ture, M. (2006). Effects of coffee consumption and smoking habit on bone mineral density. Rheumatology International, 26(6), 530–535.
  • Dessalegn, Y., Labuschagne, M. T., Osthoff, G., & Herselman, L. (2007). Variation for green bean caffeine, chlorogenic acid, sucrose and trigonelline contents among Ethiopian arabica coffee accessions. SINET: Ethiopian Journal of Science, 30(1), 77–82.
  • Diao, X., Taffesse, A. S., Yu, B., & Pratt, A. N. (2010). Economic importance of agriculture for sustainable development and poverty reduction: The case study of Ethiopia. Paper presented at Global Forum on Policies for Agricultural Development, Poverty Reduction and Food Security, 29–30 November 2010,
  • Dong, W., Chen, Q., Wei, C., Hu, R., Long, Y., Zong, Y., & Chu, Z. (2021). Comparison of the effect of extraction methods on the quality of green coffee oil from arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrasonics Sonochemistry, 74, 105578.
  • Dos Santos, É. J., & De Oliveira, E. (2001). Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. Journal of Food Composition and Analysis, 14(5), 523–531.
  • Dos Santos, J. S., Dos Santos, M. L. P., & Conti, M. M. (2010). Comparative study of metal contents in Brazilian coffees cultivated by conventional and organic agriculture applying principal component analysis. Journal of the Brazilian Chemical Society, 21(8), 1468–1476.
  • Duarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118(3), 851–855.
  • ECX (Ethiopia Commodity Exchange). (2011). ECX quality operation manual. Addis Ababa.
  • FAO. (2015). Statistical pocketbook: Coffee 2015. ( Accessed 03.02.2017). http://www.fao.org/3/a-i4985e.pdf
  • Farah, A. (2012). Coffee constituents. In Y.-F. Chu (Ed.), Coffee: Emerging health effects and disease prevention, 1st ed (pp. 281–304). IFT Press.
  • Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23–36.
  • Farah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373–380.
  • Farah, A., Monteiro, M., Donangelo, C. M., & Lafay, S. (2008). Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition, 138(12), 2309–2315.
  • FAS, & Francom, M. G. (2017). Coffee annual report, Global Agricultural Information Network (GAIN) Report Number: ET1710, 19 May. 2017.
  • Figueiredo, L. P., Borém, F. M., Ribeiro, F. C., Giomo, G. S., Taveira, J. H. S., & Malta, M. R. (2015). Fatty acid profiles and parameters of quality of specialty coffees produced in different Brazilian regions. African Journal of Agricultural Research, 10(35), 3484–3493.
  • Flament, I. (2002). Coffee flavour chemistry. John Willey and Sons.
  • Franca, A. S., Mendonça, J. C. F., & Oliveira, S. D. (2005). Composition of green and roasted coffees of different cup qualities. Lwt-Food Science and Technology, 38(7), 709–715.
  • Gebreselassie, A., Bekele, T., Kalweit, D., & Grech, W. (2010). A review of Ethiopian agriculture: Roles, policy and small-scale farming systems. KOPIN (Koperazzjoni Internazzjonali), and Ethiopian Nongovernmental Organization Emmanuel Development Association (EDA), Addis Ababa.
  • Gebreselassie, S., & Lud, E. (2007). Agricultural commercialization in coffee growing areas of Ethiopia. Ethiopian Journal of Economics, 15(1), 89–118.
  • Getachew, M., Tolassa, K., De Frenne, P., Verheyen, K., Tack, A. J. M., & Hylander, K. (2022). The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in Southwest Ethiopia. Agronomy for Sustainable Development, 42(4), 61.
  • Girma, N. K. (2011). Marketing information operation in Ethiopia with special reference to the Ethiopia Commodity Exchange (ECX) coffee trading. MSc Thesis, Swedish University of Agricultural Sciences,
  • Girma, B., Gure, A., & Wedajo, F. (2020). Influence of altitude on caffeine, 5-caffeoylquinic acid, and nicotinic acid contents of arabica coffee varieties. Journal of Chemistry, 2020(1), 3904761.
  • Gizaw, N., Abafita, J., & Merra, T. M. (2022). Impact of coffee exports on economic growth in Ethiopia: An empirical investigation. Cogent Economics and Finance, 10(1), 2041260.
  • Godos, J., Pluchinotta, F. R., Marventano, S., Buscemi, S., Volti, G. L., Galvano, F., & Grosso, G. (2014). Coffee components and cardiovascular risk: Beneficial and detrimental effects. International Journal Food Sciences and Nutrition, 65(8), 925–936.
  • Gole, T. W. (2015). Coffee: Ethiopia’s gift to the world. In: The traditional production systems as living examples of crop domestication, and sustainable production and an assessment of different certification schemes. Environment and Coffee Forest Forum (ECFF), Addis Ababa.
  • Gole, T. W., Denich, M., Teketey, D., & Vlek, P. L. G. (2002). Human impact on the Coffea arabica genepool in Ethiopia and the need for its in situ conservation. In J. M. M. Engels, V. Ramanatha Rao, A. H. D. Brown, & M. T. Jackson (Eds.), Managing plant genetic diversity (pp. 237–247). IPGRI.
  • Gonzalvez, A., Armenta, S., & De La Guardia, M. (2009). Trace-element composition and stable-isotope ratio for discrimination of foods with protected designation of origin. Trends in Analytical Chemistry, 28(11), 1295–1311.
  • Grembecka, M., Malinowska, E., & Szefer, P. (2007). Differentiation of market coffee and its infusions in view of their mineral composition. The Science of the Total Environment, 383(1), 59–69.
  • Grosch, W. (2001). Coffee: Recent developments. In R. J. Clarke & O. Z. Vitzthum (Eds.), Chemistry III: Volatile compounds (pp. 68–89). Blackwell Science.
  • Habte, G., Hwang, I. M., Kim, J. S., Hong, J. H., Hong, Y. S., & Choi, J. Y. (2016). Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). Food Chemistry, 212, 512–520.
  • Higdon, J. V., & Frei, B. (2006). Coffee and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 46(2), 101–123.
  • Hirakawa, N., Okauchi, R., Miura, Y., & Yagasaki, K. (2005). Anti-invasive activity of niacin and trigonelline against cancer cells. Bioscience, Biotechnology, and Biochemistry, 69(3), 653–658.
  • ICO. (2014). World coffee trade (1963–2013): A review of the markets, challenges and opportunities facing the sector, International Coffee Council 112th Session (pp. 1–27), 3–7 March. 2014,
  • ICO. (2016). Trade statistics tables. ( Accessed 14.11.2017). http://www.ico.org/trade_statistics.asp
  • ICO. (2018). Historical data on the global coffee trade. ( Accessed 09.06.2018). http://www.ico.org/new_historical.asp?section=Statistics
  • Jena, P. R., Chichaibelu, B. B., Stellmacher, T., & Grote, U. (2012). The impact of coffee certification on small-scale producers’ livelihoods: A case study from the Jimma Zone, Ethiopia. Agricultural Economics, 43(4), 429–440.
  • Jiang, L., Ding, Y., Jiang, F., Li, L., & Mo, F. (2014). Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Analytica chimica acta, 833, 22–28.
  • Joet, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., & de Kochko, A. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green arabica coffee beans. Food Chemistry, 118(3), 693–701.
  • Kandari, L. S., Yadav, H. R., Thakur, A. K., & Kandari, T. (2014). Chat (Catha edulis): A socio economic crop in Harar region, Eastern Ethiopia. SpringerPlus, 3(1), 579.
  • Kitzberger, C. S. G., Scholz, M. B. S., Pereira, L. F. P., da Silva, J. B. G. D., & Benassi, M. T. (2016). Profile of the diterpenes, lipid and protein content of different coffee cultivars of three consecutive harvests. AIMS Agriculture and Food, 1(3), 254–264.
  • Koshima, Y., Kitamura, Y., Islam, M. Z., & Kokawa, M. (2020). Quantitative and qualitative evaluation of fatty acids in coffee oil and coffee residue. Food Science and Technology Research, 26(4), 545–552.
  • Krivan, V., Barth, P., & Morales, A. F. (1993). Multielement analysis of green coffee and its possible use for the determination of origin. Microchimica Acta, 110(4–6), 217–236.
  • Kufa, T. (2012). Recent coffee research development in Ethiopia. Paper presented at the Ethiopian Coffee Export Conference: Strengthening the legacy of our coffee, 8–9 November 2012, Addis Ababa, Ethiopia.
  • Lee, C. (2000). Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clinica Chimica Acta, 295(1–2), 141–154.
  • Liang, N., & Kitts, D. D. (2016). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8(1), 16.
  • Ludwig, E., Raczek, N. N., & Kurrock, T. (1995). Contribution to composition and reactivity of coffee protein. In: Proceedings of the 16th International Conference of ASIC (pp.359–365), Kyoto, Japan.
  • Makri, E., Tsimogiannis, D., Dermesonluoglu, E. K., & Taoukisa, P. S. (2011). Modeling of Greek coffee aroma loss during storage at different temperatures and water activities. Procedia Food Science, 1, 1111–1117.
  • Martins, A. C. C., & Glória, M. B. A. (2010). Changes on the levels of serotonin precursors—tryptophan and 5-hydroxytryptophan—during roasting of arabica and robusta coffee. Food Chemistry, 100, 529–533.
  • Mazzafera, P., Schimpl, F., & Kiyota, E. (2019). Proteins of coffee beans: Recent advances. In A. Farah (Ed.), Coffee: Production, quality and chemistry (pp. 431–444). The Royal Society of Chemistry.
  • Mehari, B., Chandravanshi, B. S., Redi-Abshiro, M., Combrinck, S., McCrindle, R., & Atlabachew, M. (2020). Polyphenol contents of green coffee beans from different regions of Ethiopia. International Journal of Food Properties, 24(1), 17–27.
  • Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., Atlabachew, M., & McCrindle, R. (2016a). Profiling of phenolic compounds using UPLC-MS for determining the geographical origin of green coffee beans from Ethiopia. Journal of Food Composition and Analysis, 45(6), 16–25.
  • Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., Atlabachew, M., & McCrindle, R. (2016b). Simultaneous determination of alkaloids in green coffee beans from Ethiopia: Chemometric evaluation of geographical origin. Food Analysis Methods, 9, 1627–1637.
  • Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., & McCrindle, R. (2016c). Characterization of the cultivation region of Ethiopian coffee by elemental analysis. Analytical Letters, 49(15), 2474–2489.
  • Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., McCrindle, R., & Atlabachew, M. (2019). GC-MS profiling of fatty acids in green coffee (Coffea arabica L.) beans and chemometric modeling for tracing geographical origins from Ethiopia. Journal the Science of Food and Agriculture, 99(8), 3811–3823.
  • Mengistu, M. W., Workie, M. A., & Mohammed, A. S. (2020). Biochemical compounds of arabica coffee (Coffea arabica L.) varieties grown in Northwestern highlands of Ethiopia. Cogent Food & Agriculture, 6(1), 1741319.
  • Minten, B., Tamru, S., Kuma, T., & Nyarko, Y. (2014). Structure and performance of Ethiopia’s coffee export sector. Ethiopia Strategy Support Program working paper 66, International Food Policy Research Institute (IFPRI).
  • MoARD (Ministry of Agriculture and Rural Development). (2007). Agriculture marketing sector, coffee: The gift of Ethiopia to the world.
  • Moat, J., Williams, J., Baena, S., Wilkinson, T., Demissew, S., & Challa, Z. K. (2017). Coffee farming and climate change in Ethiopia: Impacts, forecasts, resilience and opportunities. –summary. The Strategic Climate Institutions Programme (SCIP). Royal Botanic Gardens.
  • Moat, J., Williams, J., Baena, S., Wilkinson, T., Gole, T. W., & Challa, Z. K. (2017). Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants, 3(7), 1708.
  • Montagnon, C. (2020). Genetic diversity analysis of 158 C. arabica samples of the Cup of Excellent 2020 in Ethiopia, RD2 Vision.
  • Moon, S. A., Wongsakul, S., Kitazawa, H., & Saengrayap, R. (2022). Lipid oxidation changes of arabica green coffee beans during accelerated storage with different packaging types. Foods, 11(19), 3040.
  • Murkovic, M., & Derler, K. (2006). Analysis of amino acids and carbohydrates in green coffee. Journal of Biochemical and Biophysical Methods, 69(1–2), 25–32.
  • Nure, D. (2008). Mapping quality profiles of Ethiopian coffee by origin. In: G. Adugna, B. Bellachew, T. Shimber, E. Taye, & T. Kufa (Eds.), Proceedings of a National Workshop on Four Decades of Coffee Research and Development in Ethiopia (pp. 317–334), 14–17 August 2007, Addis Ababa, Ethiopia.
  • Odeny, D., Chemining’wa, G., & Shibairo, S. (2014). Beverage quality and biochemical components of shaded coffee. Paper presented at the 25th International Conference of ASIC, 8–13 September 2014, Armenia - Quindío, Colombia.
  • Oestreich-Janzen, S. (2010). Chemistry of coffee. ( Accessed 28.12.2017). https://booksite.elsevier.com/brochures/conap2/PDFs/Vol3_Chemistry_of_Coffee_lr.pdf
  • Ogita, S., Uefugi, H., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423, 823.
  • Oliveira, M., Casal, S., Morais, S., Alves, C., Dias, F., & Ramos, S. (2012). Intra- and interspecific mineral composition variability of commercial coffees and coffee substitutes: Contribution to mineral intake. Food Chemistry, 130(3), 702–709.
  • Petit, N. (2007). Ethiopia’s coffee sector: A bitter or better future? Journal of Agrarian Change, 7(2), 225–263.
  • Pinheiro, P. F., Pinheiro, C. A., Osório, V. M., & Pereira, L. L. (2021). Chemical constituents of coffee. In L. L. Pereira & T. R. Moreira (Eds.), Quality determinants in coffee production (pp. 209–254). Food Engineering Series, Springer.
  • Pohl, P., Stelmach, E., Welna, M., & Szymczycha-Madeja, A. (2013). Determination of the elemental composition of coffee using instrumental methods. Food Analytical Methods, 6(2), 598–613.
  • Ribeiro-Alves, M., Trugo, L. C., & Donangelo, C. (2003). Use of oral contraceptives blunts the calciuric effect of caffeine in young adult women. The Journal of Nutrition, 133(2), 393–398.
  • Ribeiro, E., Rocha, T. D. S., & Prudencio, S. H. (2021). Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chemistry, 348 , 129061.
  • Rogers, W., Bézard, G., Deshayes, A., Meyer, I., Pétiard, V., & Marraccini, P. (1999). Biochemical and molecular characterization and expression of the 11S-type storage protein from Coffea arabica endosperm. Plant Physiology and Biochemistry, 37(4), 261–272.
  • Romano, R., Santini, A., Grottaglie, L. L., Manzo, N., Visconti, A., & Ritieni, A. (2014). Identification markers based on fatty acid composition to differentiate between roasted arabica and Canephora (robusta) coffee varieties in mixtures. Journal of Food Composition and Analysis, 35(1), 1–9.
  • Samsalee, N., & Sothornvit, R. (2021). Physicochemical, functional properties and antioxidant activity of protein extract from spent coffee grounds using ultrasonic-assisted extraction. AIMS Agriculture and Food, 6(3), 864–878.
  • Scholz, M. B. S., Kitzberger, C. S. G., Durand, N., & Rakocevic, M. (2018). From the field to coffee cup: Impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. European Food Research and Technology, 244, 1793–1802.
  • Scholz, M. B. S., Kitzberger, C. S. G., Pagiatto, N. F., Pereira, L. F. P., Davrieux, F., & Pot, D. (2016). Chemical composition in wild Ethiopian arabica coffee accessions. Euphytica, 209(2), 429–438.
  • Selmar, D., Bytof, G., & Knopp, S. -E. (2008). The storage of green coffee (Coffea arabica): Decrease of viability and changes of potential aroma precursors. Annals of Botany, 101(1), 31–38.
  • Selmar, D., Bytof, G., Knopp, S. -E., Bradbury, A., & Wilkens, J. (2005). Biochemical insights into coffee processing: Quality and nature of green coffees are interconnected with an active seed metabolism. In: Proceedings of the 20th International Conference of ASIC (pp. 111–119), 11–15 October 2004, Bangalore, India.
  • Shearer, J., Sellars, E., Farah, A., Graham, T. E., & Wasserman, D. H. (2007). Effects of chronic coffee consumption on glucose kinetics in the conscious rat. Canadian Journal of Physiology and Pharmacology, 85(8), 823–830.
  • Shiferaw, T. (2018). Profiling the fatty acid constituents in green coffee beans from some selected areas of Amhara region. MSc Thesis, Bahir Dar University,
  • Shimizu, M. M., & Mazzafera, P. (2000). Compositional changes of proteins and amino acids in germinating coffee seeds. Brazilian Archives of Biology and Technology, 439(3), 1–7.
  • Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18(1), 201–216.
  • Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315–325.
  • Swinnen, J. (2007). Global supply chains, standards and the poor. CABI Publishing.
  • Szefer, P. (2007). Chemometric techniques in analytical evaluation of food quality. In P. Szefer & J. Nriagu (Eds.), Mineral components in foods (pp. 69–121). CRC Press—Taylor & Francis.
  • Tefera, A., & Bickford, R. (2021). Coffee annual report, Global Agricultural Information Network (GAIN), report number: ET2021-0013, 14 May 2021.
  • Tefera, A., & Francom, M. G. (2015). Coffee annual report, Global Agricultural Information Network (GAIN), report number: ET1514, 6 May 2015.
  • Tefera, A., & Francom, M. G. (2016). Coffee annual report, Global Agricultural Information Network (GAIN), report number: ET1615, 13 June 2016.
  • Tefera, A., Tefera, T., & Gray, Q. (2014). Coffee annual report. Global Agricultural Information Network (GAIN), report number: ET1402, 13 May 2014.
  • Teply, L., & Prier, R. (1957). Nutrients in coffee, nutritional evaluation of coffee including niacin bioassay. Journal of Agricultural and Food Chemistry, 5(5), 375–377.
  • Toci, A. T., & Farah, A. (2008). Volatile compounds as potential defective coffee seeds’ markers. Food Chemistry, 108(3), 1133–1141.
  • Tohda, C., Kuboyama, T., & Komatsu, K. (2005). Search for natural products related to regeneration of the neuronal network. Neurosignals, 14(1–2), 34–45.
  • Tolessa, K. (2017). Biophysical control of coffee quality: The case of Southwestern Ethiopia. PhD Thesis, Ghent University,
  • Tolessa, K., D’heer, J., Duchateau, L., & Boeckx, P. (2017). Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. Journal of the Science of Food and Agriculture, 97(9), 2849–2857.
  • Trugo, L. C. (2003). Analysis of coffee products. In B. Caballero, L. C. Trugo, & P. Finglas (Eds.), Encyclopedia of food sciences and nutrition, 2nd ed (pp. 1498–1506). Academic Press.
  • Trugo, L. C., & Macrae, R. (1984). A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chemistry, 15(3), 219–227.
  • Tsegay, G., RediAbshiro, M., Chandravanshi, B. S., Ele, E., Mohammed, A. M., & Mamo, H. (2020). Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chemistry, 14(1), 36.
  • Upadhyay, R., & Mohan Rao, L. J. (2013). An outlook on chlorogenic acids occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition, 53(9), 968–984.
  • Vaast, P., Bertrand, B., Perriot, J. -J., Guyot, B., & Genard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204.
  • Vaast, P., Cilas, C., Perriot, J. -J., Davrieux, F., Guyot, B., & Bolaño, M. (2005). Mapping of coffee quality in Nicaragua according to regions, ecological conditions and farm management. In: Proceedings of the 20th International Conference of ASIC (pp. 842–850), 11–15 October 2004, Bangalore, India.
  • Valdés, A., Castro-Puyana, M., & Marina, M. L. (2020). Isolation of proteins from spent coffee grounds. Polyphenol removal and peptide identification in the protein hydrolysates by RP-HPLC-ESI-Q-TOF. Food Research International, 137, 109368.
  • Villarreal, D., Laffargue, A., Posada, H., Bertrand, B., Lashermes, P., & Dussert, S. (2009). Genotypic and environmental effects on coffee (Coffea arabica L.) bean fatty acid profile: Impact on variety and origin chemometric determination. Journal of Agricultural and Food Chemistry, 57(23), 11321–11327.
  • Wagemaker, T. A. L., Carvalhoa, C. R. L., Maiaa, N. B., Baggio, S. R., & Filho, O. G. (2011). Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469–473.
  • Weldemichael, G., Alamerew, S., Tulu, L., & Berecha, G. (2020). Genetic variability of Ethiopian coffee (Coffea arabica L.) accessions collected from East Wollega Zone for bean biochemical constituents. Ethiopian Journal of Agricultural Sciences, 30(3), 77–97.
  • Wiersum, K. F., Gole, T. W., Gatzweiler, F., Volkmann, J., Bognetteau, E., & Wirtu, O. (2008). Certification of wild coffee in Ethiopia: Experiences and challenges. Forests, Trees and Livelihoods, 18(1), 9–21.
  • Woldu, Z., Belew, D., & Benti, T. (2015). The coffee-khat interface in Eastern Ethiopia: A controversial land use and livelihood change scenario. Journal of Agricultural Science and Technology B, 5(3), 149–169.
  • Wondimkun, Y. W., Emire, S. A., Teferra, T. F., Stoecker, B., & Esho, T. B. (2022). Influence of genotype and processing on bioactive compounds of Ethiopian specialty arabica coffee. International Journal of Food Properties, 25(1), 2574–2588.
  • Workman, D. (2022). Coffee Exports by Country. ( Accessed 26.7.2022). https://www.worldstopexports.com/coffee-exports-country/
  • Worku, M. (2019), Quality control, quality determinants and indication of geographic origin of Ethiopian coffee. PhD Thesis, Ghent University,
  • Worku, M., Astatkie, T., & Boeckx, P. (2022). Effect of growing conditions and postharvest processing on arabica coffee bean physical quality features and defects. Heliyon, 8(1–3), e09201.
  • Worku, M., Astatkie, T., & Boeckx, P. (2023a). Quality and biochemical composition of Ethiopian coffee varied with growing region and locality. Journal of Food Composition and Analysis, 115(4), 105015.
  • Worku, M., Astatkie, T., & Boeckx, P. (2023b). Shade and postharvest processing effects on arabica coffee quality and biochemical composition in lowland and midland coffee-growing areas of Southwestern Ethiopia. Journal of Food Composition and Analysis, 115(4), 105027.
  • Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105, 278–285.
  • Worku, M., Duchateau, L., & Boeckx, P. (2016). Reproducibility of coffee quality cupping scores delivered by cupping centers in Ethiopia. Journal of Sensory Studies, 31(5), 423–429.
  • Worku, M., Upadhayay, H. R., Latruwe, K., Taylor, A., Blake, W., & Vanhaecke, F. (2019). Differentiating the geographical origin of Ethiopian coffee using XRF-and ICP-based multi-element and stable isotope profiling. Food Chemistry, 290, 295–307.
  • Yeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). Coffee volatile and aroma compounds – from the green bean to the cup. In A. Farah (Ed.), Coffee: Production, quality and chemistry (pp. 726–770). The Royal Society of Chemistry.
  • Yifru, T. (2015). Impact of agricultural exports on economic growth in Ethiopia: The case of coffee, oilseed and pulses, MSc Thesis, Egerton University,
  • Young, S. N. (2013). The effect of raising and lowering tryptophan levels on human mood and social behaviour. Philosophical Translations of the Royal Society B Biological Sciences, 368(1615), 20110375.
  • Zhou, J., Chan, L., & Zhou, S. (2012). Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Current Medicinal Chemistry, 19(21), 3523–3531.
  • Zhou, J., Zhou, S., & Zeng, S. (2013). Experimental diabetes treated with trigonelline: Effect on β cell and pancreatic oxidative parameters. Fundamental & Clinical Pharmacology, 27(3), 279–287.
  • Zhu, M., Long, Y., Ma, Y., Chen, Y., Yu, Q., & Xie, J. (2021). Comparison of chemical and fatty acid composition of green coffee bean (Coffea arabica L.) from different geographical origins. LWT - Food Science and Technology, 140(5), 110802.