1,166
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Seedling stage drought screening of candidate cowpea (Vigna unguiculata (L) Walp.) genotypes

ORCID Icon, , , , , , , , & show all
Article: 2212463 | Received 09 Feb 2023, Accepted 06 May 2023, Published online: 19 May 2023

References

  • Ajayi, A. T., Gbadamosi, A. E., & Olumekun, V. O. (2018). Screening for drought tolerance in cowpea (Vigna unguiculata L. Walp) at seedling stage under screen house condition. International Journal of BioSciences and Technology, 11(1), 1–20.
  • Alidu, S. M., Asante, I. K., Tongoona, P., Ofori, K., Danquah, A., & Padi, F. K. (2019). Development and screening of cowpea recombinant inbred lines for seedling drought tolerance. Journal of Plant Breeding and Crop Science, 11(1), 1–10. https://doi.org/10.5897/JPBCS2018.0768
  • Araus, J. L., & Hogan, K. P. (1994). Comparative leaf structure and patterns of photoinhibition of the neotropical palms. Scheelea zonensis and Socratea durissima growing in clearing and forest understory during the dry season in Panama. American Journal of Botany, 81(6), 726–738. https://doi.org/10.1002/j.1537-2197.1994.tb15507.x
  • Arjenaki, F. G., Jabbari, R., & Morshedi, A. (2012). Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences, 4(11), 726–729.
  • Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., Wright, G. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113–125. https://doi.org/10.1111/j.1439-037X.2008.00299.x
  • Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany, 55(403), 1607–1621. https://doi.org/10.1093/jxb/erh196
  • Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., Macrobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5(3), 345–360. https://doi.org/10.1007/s12571-013-0256-x
  • Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia horticulturae, 247, 107–115. https://doi.org/10.1016/j.scienta.2018.11.082
  • Ceccarelli, S., Grando, S., Baum, M., & Udupa, S. M. (2004). Breeding for drought resistance in a changing climate. In Rao, S. C., Ryan, J. (Eds.), Challenges and Strategies for Dry/and Agriculture. 32pp. 167–190. Crop Science Society of America and American Society of Agronomy.
  • da Silva, C. A., da Costa, S. D., Junior Teixeira, D. L., da Silva, P. B., dos Santos, R. C., & Siviero, A. (2018). Cowpea : A strategic legume species for food security and and health. In Legume Seed Nutraceutical Research (pp. 47–65). IntechOpen. https://doi.org/10.5772/intechopen.79006
  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8(1147), 1–16. https://doi.org/10.3389/fpls.2017.01147
  • FAOSTAT. (2020). Food and Agriculture Organization of the United Nations. www.fao.org/faostat/en/#data
  • Freire Filho, F. R., Ribeiro, V. Q., Rocha, M., de, M., E Silva, K. J. D., Nogueira, M., Do S da, R., & Rodrigues, E. V. (2012). Production, breeding and potential of cowpea crop in Brazil. Plant Physiology and Biochemistry: PPB, 51, 145–152. https://doi.org/10.1016/j.plaphy.2011.10.008
  • Gnankambary, K., Sawadogo, N., Di´eni, Z., Batieno, T. B. J., Tignegr´e, J. B. D. S., Sawadogo, M., & Ou´edraogo, T. J. (2020). Assessment of cowpea (Vigna unguiculata (L.) Walp.) mutant lines for drought tolerance. International Journal of Agronomy, 2020, 1–9. https://doi.org/10.1155/2020/8823498
  • Gonçalves, A., Goufo, P., Barros, A., Domínguez-Perles, R., Trindade, H., Rosa, E. A. S., Ferreira, L., & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941–2951. https://doi.org/10.1002/jsfa.7644
  • Gonzalez, L. M. (1996). Use of radioinduction of mutations in obtaining salinity-tolerant rice genotypes.
  • Hakam, N., Khanizadeh, S., Deell, J. R., & Richer, C. (2000). Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience, 35(2), 184–186. https://doi.org/10.21273/HORTSCI.35.2.184
  • Ibitoye, D. O. (2015). Genetic analysis of drought tolerance in cowpea [Vigna Unguiculata (L.) Walp] Issue December. University of Ghana.
  • Isma’ila, M., Ramlatu, M. A., & Zakari, B. G. (2016). Screening of selected varieties of cowpea seedlings [Vigna unguiculata (L.) Walp.] for drought tolerance. Journal of Biology and Nature, 5(1), 31–38.
  • Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1–21. https://doi.org/10.1080/23311932.2020.1769805
  • Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S., & Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology, 173, 9–18. https://doi.org/10.1016/j.jplph.2014.09.011
  • Mai-Kodomi, Y., Singh, B., Myers, O. E., Yopp, J. H., Gibson, P., & Terao, T. (1999). Two mechanisms of drought tolerance in cowpea. Indian Journal of Genetics and Plant Breeding, 59(3), 309–316.
  • Monteoliva, M. I., Guzzo, M. C., & Posada, G. A. (2021). Breeding for drought tolerance by monitoring chlorophyll content. Gene Technology, 10(3), 1–11.
  • Munné-Bosch, S., Jubany-Marí, T., & Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant, Cell & Environment, 24(12), 1319–1327. https://doi.org/10.1046/j.1365-3040.2001.00794.x
  • Nkomo, G. V., Sedibe, M. M., & Mofokeng, M. A. (2021). Production constraints and improvement strategies of Cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. International Journal of Agronomy, 2021, 1–9. https://doi.org/10.1155/2021/5536417
  • Nunes, C., Moreira, R., Pais, I., Semedo, J., Simões, F., Veloso, M. M., & Scotti-Campos, P. (2022). Cowpea physiological responses to terminal drought—Comparison between four landraces and a commercial variety. Plants, 11(5), 593. https://doi.org/10.3390/plants11050593
  • Oliveira, R. M., de, M., Filho, F. R. F., Ribeiro, V. Q., Lopes, Â. C., de, A., Bernardo, K. A., da, S., & Cruzio, A. S. (2016). Diallel analysis in cowpea aiming at selection for extra-earliness. Crop Breeding and Applied Biotechnology, 16(3), 167–173. https://doi.org/10.1590/1984-70332016v16n3a26
  • Omomowo, O. I., & Babalola, O. O. (2021). Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Frontiers in Plant Science, 12, 1–25. https://doi.org/10.3389/fpls.2021.751731
  • Percival, G. C., & Sheriffs, C. N. (2002). Identification of drought-tolerant woody perennials using chlorophyll. Arboriculture & Urban Forestry, 28(5), 215–223. https://doi.org/10.48044/jauf.2002.032
  • Pirzad, A., Shakiba, M. R., Zehtab-Salmasi, S., Mohammadi, S. A., Darvishzadeh, R., & Samadi, A. (2011). Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research, 5(12), 2483–2488.
  • Ravelombola, W., Shi, A., Chen, S., Xiong, H., Yang, Y., Cui, Q., Olaoye, D., & Mou, B. (2020). Evaluation of cowpea for drought tolerance at seedling stage. Euphytica, 216(8), 1–19. https://doi.org/10.1007/s10681-020-02660-4
  • Ravelombola, W., Shi, A., Qin, J., Weng, Y., Bhattarai, G., Zia, B., Zhou, W., & Mou, B. (2018). Investigation on various aboveground traits to identify drought tolerance in cowpea seedlings. HortScience, 53(12), 1757–1765. https://doi.org/10.21273/HORTSCI13278-18
  • Santos, R., Carvalho, M., Rosa, E., Carnide, V., & Castro, I. (2020, October). Root and agro-morphological traits performance in cowpea under drought stress. Agronomy, 10(10), 1604. https://doi.org/10.3390/agronomy10101604
  • Singh, B. B., Matsui, T. (2002). Cowpea varieties for drought tolerance. In Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. and Tamo, M., Cowpea varieties for drought tolerance. Proceedings of the World Cowpea Conference III, Ibadan, Nigeria (pp. 287–300).
  • STAR, version 2.0.1 (2014). Biometrics and Breeding Informatics. PBGB Division, International Rice Research Institute, Los Baños, Laguna.
  • Tomar, R. S. S., Tiwari, S., Vinod Naik, B. K., Chand, S., Deshmukh, R., Mallick, N., Singh, S., Singh, N. K., Tomar, S. M. S., & Tomar, S. M. S. (2016). Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. PLos One, 11(6), 1–21. https://doi.org/10.1371/journal.pone.0156528
  • Tumwesigye, E., & Musiitwa, F. (2002). Characterizing drought patterns for appropriate development and transfer of drought resistance maize cultivar in Uganda. 7th Eastern and Southern Africa Regional Maize Conference and Symposium on Low-Nitrogen and Drought Tolerance in Maize, Nairobi, Kenya (pp. 260–262).
  • Valladares, F., Dobarro, I., Sa´nchez-Go´mez, D., & Pearcy, R. W. (2005). Photoinhibition and drought in Mediterranean woody saplings: Scaling effects and interactions in sun and shade phenotypes. Journal of Experimental Botany, 56(411), 483–494. https://doi.org/10.1093/jxb/eri037
  • Vasconcelos, M. I., Maia, M. F. M., Farias, D. F., Campello, C. C., Carvalho, A. F. U., Moreira, R., de, A., & Oliveira, J. T. A. (2010). Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal of Food Composition & Analysis, 23(1), 54–60. https://doi.org/10.1016/j.jfca.2009.05.008
  • Verbree, D. A., Singh, B. B., & Payne, W. A. (2015). Genetics and heritability of shoot drought tolerance in cowpea seedlings. Crop Science, 55(1), 146–153. https://doi.org/10.2135/cropsci2014.02.0137
  • Yahaya, D., Denwar, N., & Blair, M. W. (2019). Effects of moisture deficit on the yield of cowpea genotypes in the Guinea Savannah of northern Ghana. Agricultural Sciences, 10(04), 577–595. https://doi.org/10.4236/as.2019.104046