1,622
Views
2
CrossRef citations to date
0
Altmetric
Food Science & Technology

The current research progress of ginseng species: The cultivation and application

, , , , , , , & show all
Article: 2216483 | Received 31 Jan 2023, Accepted 17 May 2023, Published online: 30 May 2023

References

  • An, M. Y., Lee, S. R., Hwang, H. J., Yoon, J. G., Lee, H. J., & Cho, J. A. (2021). Antioxidant and anti-inflammatory effects of Korean Black ginseng extract through er stress pathway. Antioxidants, 10(1), 62. https://doi.org/10.3390/antiox10010062
  • Attele, A. S., Wu, J. A., & Yuan, C. S. (1999). Ginseng pharmacology: Multiple constituents and multiple actions. Biochemical Pharmacology, 58(11), 1685–17. https://doi.org/10.1016/S0006-2952(99)00212-9
  • Baeg, I. H., & So, S. H. (2013). The world ginseng market and the ginseng (Korea). Journal of Ginseng Research, 37(1), 1–7. https://doi.org/10.5142/jgr.2013.37.1
  • Bae, Y. S., Park, K., & Kim, C. H. (2004). Bacillus spp. as biocontrol agents of root rot and phytophthora blight on ginseng. Plant Pathology Journal, 20(1), 63–66. https://doi.org/10.5423/PPJ.2004.20.1.063
  • Chandra, S. P., Vianney, Y. M., Christie, T. L., Wongso, M., Widjaja, M., Yang, D. C., Kang, S. C., Atoum, M. F. M., & Sukweenadhi, J. (2021). Mass Production of Panax ginseng CA Mey. Root Cultures in Indonesia Sarhad Journal of Agriculture, 37(1), 98–109. https://doi.org/10.17582/journal.sja/2021/37.s1.98.109
  • Choi, S. Y., Cho, C. W., Lee, Y., Kim, S. S., Lee, S. H., & Kim, K. T. (2012). Comparison of ginsenoside and phenolic ingredient contents in hydroponically-cultivated ginseng leaves, fruits, and roots. Journal of Ginseng Research, 36(4), 425–429. https://doi.org/10.5142/jgr.2012.36.4.425
  • Choi, S. Y., Hong, H. D., Bae, H. M., Choi, C., & Kim, K. T. (2011). Phytochemical characteristics of coffee bean treated by coating of ginseng extract. Journal of Ginseng Research, 35(4), 436–441. https://doi.org/10.5142/jgr.2011.35.4.436
  • Choi, J., Kim, J., Yoon, H. I., & Son, J. E. (2022). Effect of far-red and UV-B light on the growth and ginsenoside content of ginseng (Panax ginseng CA Meyer) sprouts aeroponically grown in plant factories. Horticulture, Environment, and Biotechnology, 63(1), 77–87. https://doi.org/10.1007/s13580-021-00380-9
  • Dai, Y. L., Yang, D., Song, L. H., Yang, H. M., & Yu, J. B. (2021). Low molecular weight oligosaccharide from Panax ginseng C.A. Meyer against UV-mediated apoptosis and inhibits tyrosinase activity in-vitro and in-vivo. Evidence-Based Complementary and Alternative Medicine, 2021, 1–13. https://doi.org/10.1155/2021/8879836
  • Fu, X., Shi, D., Qu, C., Zhong, G., Zou, W., & Liu, J. (2014). Anticancer effects of ginseng leaves crude polysaccharides on human hepatoma cell SMMC-7721. Chinese Medicine, 05(2), 87–93. https://doi.org/10.4236/cm.2014.52010
  • Gao, J., Zhao, X., Liu, H., Fan, Y., & Cheng, H. (2010). A highly selective ginsenoside Rb1-hydrolyzing β-d-glucosidase from Cladosporium fulvum. Process Biochemistry, 45(6), 897–903. https://doi.org/10.1016/j.procbio.2010.02.016
  • Gong, J. T., Li, K. M., Sun, M., Liu, H. J., & Zhang, Z. L. (2016). Allelopathy and soil sickness in continuous cropping of Panax medicinal plants. Allelopathy Journal, 39, 1–17.
  • Goodwin, P. H., & Proctor, E. (2019). Molecular techniques to assess genetic variation within and between Panax ginseng and Panax quinquefolius. Fitoterapia, 138, 104343. https://doi.org/10.1016/j.fitote.2019.104343
  • Huo, Y., Kang, J. P., Ahn, J. C., Kim, Y. J., Piao, C. H., Yang, D. U., & Yang, D. C. (2021). Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. Journal of Ginseng Research, 45(2), 218–227. https://doi.org/10.1016/j.jgr.2019.12.008
  • In, G., Ahn, N. G., Bae, B. S., Lee, M. W., Park, H. W., Jang, K. H., & Kwak, Y. S. (2017). In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. Journal of Ginseng Research, 41(3), 361–369. https://doi.org/10.1016/j.jgr.2016.07.004
  • In, J. G., Kim, M. K., Lee, O. R., Kim, Y. J., Lee, B. S., Kim, S. Y., & Yang, D. C. (2010). Molecular identification of Korean mountain ginseng using an amplification refractory mutation system (ARMS). Journal of Ginseng Research, 34(1), 41–46. https://doi.org/10.5142/JGR.2010.34.1.041
  • Islam, M. J., Ryu, B. R., Azad, M. O. K., Rahman, M. H., Rana, M. S., Lim, J. D., & Lim, Y. S. (2021). Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean ginseng (Panax ginseng Meyer) sprouts. Plants, 10(7), 10. https://doi.org/10.3390/plants10071313
  • Jang, W., Jang, Y., Cho, W., Lee, S. H., Shim, H., Park, J. Y., Xu, J., Shen, X., Liao, B., Jo, I. H., & Kim, Y. C. (2022). High-throughput digital genotyping tools for Panax ginseng based on diversity among 44 complete plastid genomes. Plant Breeding and Biotechnology, 10(3), 174–185. https://doi.org/10.9787/PBB.2022.10.3.174
  • Jiao, X. L., Lu, X. H., Chen, A. J., Luo, Y., Hao, J. J., & Gao, W. W. (2015). Effects of Fusarium solani and F. oxysporum infection on the metabolism of ginsenosides in American ginseng roots. Molecules, 20(6), 10535–10552. https://doi.org/10.3390/molecules200610535
  • Jiao, X. L., Zhang, X. S., Lu, X. H., Qin, R., Bi, Y. M., & Gao, W. W. (2019). Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-44530-7
  • Kang, J. P., Huo, Y., Yang, D. U., & Yang, D. C. (2021). Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng. Journal of Ginseng Research, 45(3), 442–449. https://doi.org/10.1016/j.jgr.2020.01.001
  • Kan, H., Qu, S., Dong, K., Wang, S., Xu, C., Wang, Y., & Hua, S. (2023). Integrated metabolome and transcriptome analysis unveils the underlying molecular response of Panax ginseng plants to the phytophthora cactorum infection. Agriculture, 13(2), 509. https://doi.org/10.3390/agriculture13020509
  • Kawakatsu, T., & Fukuda, N. (2023). Dense planting and environmental control (temperature, light intensity, and concentration of nutrient solution) can increase the yield of ginseng (Panax ginseng CA Meyer) seedlings in indoor cultivation with artificial light. Horticulture, Environment, and Biotechnology, 1–12. https://doi.org/10.1007/s13580-022-00506-7
  • Kim, N. Y., & Han, M. J. (2005). Development of ginseng yogurt fermented by Bifidobacterium spp. Korean Journal of Food Cookery Science, 221, 575–584.
  • Kim, K., Huh, J. H., Um, Y., Jeon, K. S., & Kim, H. J. (2020). The comparative of growth characteristics and ginsenoside contents in wild-simulated ginseng (Panax ginseng) on different years by soil properties of cultivation regions. Korean Journal of Plant Reources, 33, 651–658.
  • Kim, Y. J., Jang, M. G., Noh, H. Y., Lee, H. J., Sukweenadhi, J., Kim, J. H., Kim, S. Y., Kwon, W. S., & Yang, D. C. (2014). Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses. Gene, 535(1), 33–41. https://doi.org/10.1016/j.gene.2013.10.071
  • Kim, B. B., Jeong, J. H., Jung, S. J., Yun, D. W., Yoon, E. S., & Choi, Y. E. (2005). Authentication of Korean Panax ginseng from Chinese Panax ginseng and Panax quinquefolius by AFLP analysis. Journal of Plant Biotechnology, 7(2), 81–86.
  • Kim, Y. J., Joo, S. C., Shi, J., Hu, C., Quan, S., Hu, J., & Zhang, D. (2018). Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Reports, 37(3), 393–410. https://doi.org/10.1007/s00299-017-2236-7
  • Kim, D. G., Shin, J. H., & Kang, M. J. (2018). Physiochemical Characteristics of Panax ginseng C. A Meyer sprout cultivated with nanobubble water and antioxidant activities of enzymatic hydrolysates. Journal of Agriculture & Life Science, 52(4), 109–120. https://doi.org/10.14397/jals.2018.52.4.109
  • Kim, Y. J., Sukweenadhi, J., Seok, J. W., Kang, C. H., Choi, E. S., Subramaniyam, S., & Yang, D. C. (2017). Complete genome sequence of Paenibacillus yonginensis DCY84 T, a novel plant symbiont that promotes growth via induced systemic resistance. Standards in Genomic Sciences, 12(1), 1–7. https://doi.org/10.1186/s40793-017-0277-8
  • Lee, J., Hong, S. M., Park, N., Lee, J., Jang, S. G., Cho, M. L., & Park, S. H. (2020). Red ginseng extracts as an adjunctive therapeutic for gout: Preclinical and clinical evidence. Food and Agricultural Immunology, 32(1), 1–14. https://doi.org/10.1080/09540105.2020.1854189
  • Lee, H. J., Jeong, J., Alves, A. C., Han, S. T., In, G., Kim, E. H., & Hong, Y. S. (2019). Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons. Journal of Ginseng Research, 43(4), 654–665. https://doi.org/10.1016/j.jgr.2019.04.004
  • Lee, M. H., Lee, Y. C., Kim, S. S., Hong, H. D., & Kim, K. T. (2015). Quality and antioxidant activity of ginseng seed processed by fermentation strains. Journal of Ginseng Research, 39(2), 178–182. https://doi.org/10.1016/j.jgr.2014.10.007
  • Lee, O. R., Sathiyaraj, G., Kim, Y. J., In, J. G., Kwon, W. S., Kim, J. H., & Yang, D. C. (2011). Defense genes induced by pathogens and abiotic stresses in Panax ginseng C.A. Meyer. Journal of Ginseng Research, 35(1), 1–11. https://doi.org/10.5142/jgr.2011.35.1.001
  • Lee, S. W., Seong, N., Kang, S., Hyun, D., Chang, K. Y., Cha, S., & Hyun, G. S. (2004). Comparison of growth characteristics and quality of ginseng (Panax ginseng) grown under upland and paddy field. Korean Journal of Crop Science, 49, 389–393.
  • Le, K. C., Ho, T. T., Lee, J. D., Paek, K. Y., & Park, S. Y. (2020). Colchicine mutagenesis from long-term cultured adventitious roots increases biomass and ginsenoside production in wild ginseng (Panax ginseng Mayer). Agronomy, 10(6), 785. https://doi.org/10.3390/agronomy10060785
  • Le, K. C., Jeong, C. S., Lee, H., Paek, K. Y., & Park, S. Y. (2019). Ginsenoside accumulation profiles in long-and short-term cell suspension and adventitious root cultures in Panax ginseng. Horticulture, Environment, and Biotechnology, 60(1), 125–134. https://doi.org/10.1007/s13580-018-0108-x
  • Li, M. (2008). Effect of ginseng root exudates on rhizospheric soil microecology. Department of Environmental Engineering, Master degree, Jilin Agricultural University.
  • Li, Z. (2018). Allelopathy of autotoxic compounds and mitigation method for ginseng continuous cropping obstacle. Department of Plant Pathology, Doctor of Philosophy,Shenyang Agricultural University (Chinese).
  • Li, G., Cui, Y., Wang, H., Kwon, W. S., & Yang, D. C. (2017). Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 regions. Journal of Ginseng Research, 41(3), 326–329. https://doi.org/10.1016/j.jgr.2016.06.003
  • Li, T., Kim, J. H., Jung, B., Ji, S., Seo, M. W., Han, Y. K., Lee, S. W., Bae, Y. S., Choi, H. G., Lee, S. H., & Lee, J. (2020). Transcriptome analyses of the ginseng root rot pathogens cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms. Journal of Ginseng Research, 44(1), 161–167. https://doi.org/10.1016/j.jgr.2018.11.005
  • Li, H., Lee, J. H., & Ha, J. M. (2008). Effective purification of ginsenosides from cultured wild ginseng roots, red ginseng, and white ginseng with macroporous resins. Journal of MicroBiologyogy and Biotechnology, 18(11), 1789–1791. https://doi.org/10.4014/jmb.0800.192
  • Liu, M., Cai, Y., Li, F., Wu, Y., Zhang, M., Wang, Y., Fan, M., Li, B., Huang, X., Zheng, F., & Yue, H. (2022). Metabolomics and network pharmacological analysis to explore the mechanism of ginseng treatment for spleen‐qi deficiency. Journal of Separation Science, 45(24), 4427–4438. https://doi.org/10.1002/jssc.202200457
  • Liu, S., Chen, C., Wan, X., Jin, X., Ren, Y., Xiu, Y., & Li, Y. (2019). Antitumor effects and mechanism of protein from Panax ginseng on human breast cancer cell line MCF-7. Pharmacognosy Magazine, 15(65), 715. https://doi.org/10.4103/pm.pm_151_19
  • Liu, J., Liu, Y., Wang, Y., Abozeid, A., Zu, Y. G., Zhang, X. N., & Tang, Z. H. (2017). GC-MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng. Molecule, 22(3), 496. https://doi.org/10.3390/molecules22030496
  • Liu, H., Lu, X., Hu, Y., & Fan, X. (2020a). Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacological Research, 161, 105263. https://doi.org/10.1016/j.phrs.2020.105263
  • Liu, H., Lu, X., Hu, Y., & Fan, X. (2020b). Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacological Research, 161, 105263. https://doi.org/10.1016/j.phrs.2020.105263
  • Liu, M., Pan, Z., Yu, J., Zhu, L., Zhao, M., Wang, Y., Chen, P., Liu, C., Hu, J., Liu, T., Wang, K., Wang, Y., & Zhang, M. (2022). Transcriptome-wide characterization, evolutionary analysis, and expression pattern analysis of the NF-Y transcription factor gene family and salt stress response in Panax ginseng. BMC Plant Biology, 22(1), 1–11. https://doi.org/10.1186/s12870-022-03687-6
  • Liu, H. J., Yang, X. Y., Miao, Z. Q., Li, S. D., Chen, Y. H., Liu, G., & Zhang, Z. L. (2018). Characteristics of soil microflora of Panax notoginseng in different continuous cropping years. Allelopathy Journal, 44(2), 145–158. https://doi.org/10.26651/allelo.j./2018-44-2-1160
  • Li, L., Wang, Y., Xiu, Y., & Liu, S. (2018). Chemical differentiation and quantitative analysis of different types of panax genus stem-leaf based on a UPLC-Q-exactive orbitrap/MS combined with multivariate statistical analysis approach. Journal of Analytical Methods in Chemistry, 2018, 16. https://doi.org/10.1155/2018/9598672
  • Li, Q., Zhang, L., Guan, T., Xu, Y., & Chen, C. (2020). Allelopathic effects of ginsenoside Rgl on seed germination and seedling growth of Panax ginseng. Allelopathy Journal, 49(2), 229–242. https://doi.org/10.26651/allelo.j/2020-49-2-1267
  • Lu, X. H., Jiao, X. L., Hao, J. J., Chen, A. J., & Gao, W. W. (2015). Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. European Journal of Plant Pathology, 144(3), 467–476. https://doi.org/10.1007/s10658-015-0786-5
  • Luo, L., Zhang, J., Ye, C., Li, S., Duan, S., Wang, Z., Huang, H., Liu, Y., Deng, W., Mei, X., He, X., Yang, M., & Zhu, S. (2022). Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome. Microbiology Spectrum, 10(6), e02418–22. https://doi.org/10.1128/spectrum.02418-22
  • Lu, X. H., Zhang, X. M., Jiao, X. L., Hao, J. J., Zhang, X. S., Luo, Y., & Gao, W. W. (2020). Taxonomy of fungal complex causing red-skin root of Panax ginseng in China. Journal of Ginseng Research, 44(3), 506–518. https://doi.org/10.1016/j.jgr.2019.01.006
  • Mathiyalagan, R., Subramaniyam, S., Natarajan, S., Kim, Y. J., Sun, M. S., Kim, S. Y., & Yang, D. C. (2013). Insilico profiling of microRnas in Korean ginseng (Panax ginseng). Journal of Ginseng Research, 37(2), 227. https://doi.org/10.5142/jgr.2013.37.227
  • Natalie, K., Chandra, S. P., Christanti, P., Hak, K. J., Yang, D. C., & Sukweenadhi, J. Influence of volume medium on growth and ginsenoside level in adventitious root culture of Panax ginseng CA Meyer. (2022). IOP Conference Series: Earth and Environmental Science, 1083(1), 012090. IOP Publishing. https://doi.org/10.1088/1755-1315/1083/1/012090
  • Park, Y. J., Hwang, U., Park, S., Sim, S., Jeong, S., Park, M., & Suh, H. J. (2021). Optimal bioconversion for compound K production from red ginseng root by sequential enzymatic hydrolysis and its characteristics. Applied Biological Chemistry, 64(1), 1–11. https://doi.org/10.1186/s13765-020-00587-x
  • Park, Y. H., Kim, J. U., Kim, D. H., Son, Y. K., Yun, J. H., Moon, H. P., & Cho, S. Y. (2016). Current status of ginseng cultivation and soil characteristics of northeastern three provinces in China. Korean Journal of Soil Science and Fertilizer, 49(6), 795–806. https://doi.org/10.7745/KJSSF.2016.49.6.795
  • Park, Y. H., Mishra, R. C., Yoon, S., Kim, H., Park, C., Seo, S. T., & Bae, H. (2019). Endophytic trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. Journal of Ginseng Research, 43(3), 408–420. https://doi.org/10.1016/j.jgr.2018.03.002
  • Putiri, A. L., Close, J. R., Lilly, H. R., Guillaume, N., & Sun, G. C. (2017). Qigong exercises for the management of type 2 diabetes mellitus. Medicines, 4(3), 59. https://doi.org/10.3390/medicines4030059
  • Ratan, Z. A., Haidere, M. F., Hong, Y. H., Park, S. H., Lee, J. O., Lee, J., & Cho, J. Y. (2021). Pharmacological potential of ginseng and its major component ginsenosides. Journal of Ginseng Research, 45(2), 199–210. https://doi.org/10.1016/j.jgr.2020.02.004
  • Siddiqi, M. H., Siddiqi, M. Z., Ahn, S., Kang, S., Kim, Y. J., Sathishkumar, N., & Yang, D. C. (2013). Ginseng saponins and the treatment of osteoporosis: Mini literature review. Journal of Ginseng Research, 37(3), 261. https://doi.org/10.5142/jgr.2013.37.261
  • So, S. H., Lee, J. W., Kim, Y. S., Hyun, S. H., & Han, C. K. (2018). Red ginseng monograph. Journal of Ginseng Research, 42(4), 549–561. https://doi.org/10.1016/j.jgr.2018.05.002
  • Song, J. S., Jung, S., Jee, S., Yoon, J. W., Byeon, Y. S., Park, S., & Kim, S. B. (2021). Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-82487-8
  • Sukweenadhi, J., Balusamy, S. R., Kim, Y. J., Lee, C. H., Kim, Y. J., Koh, S. C., & Yang, D. C. (2018). A growth-promoting bacteria, paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Frontiers in Plant Science, 9, 813. https://doi.org/10.3389/fpls.2018.00813
  • Sun, H., Lee, O. R., Kim, Y. J., Jeong, S. K., In, J. G., Kwon, W. S., & Yang, D. C. (2010). Identification of ’Chunpoong’ among Panax ginseng cultivars using real time PCR and SNP marker. Journal of Ginseng Research, 34(1), 47–50. https://doi.org/10.5142/JGR.2010.34.1.047
  • Tan, Y., Cui, Y., Li, H., Kuang, A., Li, X., Wei, Y., & Ji, X. (2017). Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 57(4), 337–344. https://doi.org/10.1002/jobm.201600464
  • Tian, G. L., Bi, Y. M., Jiao, X. L., Zhang, X. M., Li, J. F., Niu, F. B., & Gao, W. W. (2021). Application of vermicompost and biochar suppresses fusarium root rot of replanted American ginseng. Applied Microbiology and Biotechnology, 105(18), 6977–6991. https://doi.org/10.1007/s00253-021-11464-y
  • Tian, L., Shi, S., Ma, L., Zhou, X., Luo, S., Zhang, J., & Tian, C. (2019). The effect of glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. Journal of Ginseng Research, 43(1), 77–85. https://doi.org/10.1016/j.jgr.2017.08.005
  • Tong, A. Z., Liu, W., Liu, Q., Xia, G. Q., & Zhu, J. Y. (2021). Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages. BMC microBiologyogy, 21(1), 1–13. https://doi.org/10.1186/s12866-020-02081-2
  • Wang, J., Chen, H., Gao, J., Guo, J., Zhao, X., & Zhou, Y. (2018). Ginsenosides and ginsenosidases in the pathoBiologyogy of ginseng-Cylindrocarpon destructans. Plant Physiology & Biochemistry, 123, 406–413. https://doi.org/10.1016/j.plaphy.2017.12.038
  • Wang, S. H., Liang, W. X., Lu, J., Yao, L., Wang, J., & Gao, W. Y. (2020). Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. Chinese Herbal Medicines, 12(3), 257–264. https://doi.org/10.1016/j.chmed.2020.02.003
  • Wang, Q., Sun, H., Xu, C., Ma, L., Li, M., Shao, C., Guan, Y., Liu, N., Liu, Z., Zhang, S., & Zhang, L. (2019). Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Applied Soil Ecology, 138, 245–252. https://doi.org/10.1016/j.apsoil.2019.03.012
  • Wang, H. P., Zhang, Y. B., Yang, X. W., Yang, X. B., Xu, W., Xu, F., & Zhang, L. X. (2016). High-performance liquid chromatography with diode array detector and electrospray ionization ion trap time-of-flight tandem mass spectrometry to evaluate ginseng roots and rhizomes from different regions. Molecules, 21(5), 603. https://doi.org/10.3390/molecules21050603
  • Wee, J. J., Kim, Y. S., Kyung, J. S., Song, Y. B., KDC, D. J. H., & Lee, S. D. (2010). Identification of anticoagulant components in Korean red ginseng. Journal of Ginseng Research, 34(4), 355–362. https://doi.org/10.5142/jgr.2010.34.4.355
  • Wu, W., Song, F., Guo, D., Mi, J., Qin, Q., Yu, Q., & Liu, S. (2012). Mass spectrometry-based approach in ginseng research: A promising way to metabolomics. Current Analytical Chemistry, 8(1), 43–66. https://doi.org/10.2174/157341112798472189
  • Xia, Z. D., Sun, B., Wen, J. F., Ma, R. X., Wang, F. Y., Wang, Y. Q., Li, Z. H., Jia, P., & Zheng, X. H. (2022). Research progress on metabolomics in the quality evaluation and clinical study of Panax ginseng. Biomedical Chromatography, e5546. https://doi.org/10.1002/bmc.5546
  • Xia, S., Yan, H., Li, R., & Gao, Y. (2000). Occurrence types and control suggestions of ginseng root diseases. Special Wild Economic Animal & Plant Research, 2, 60–62.
  • Yao, F., Li, X., Sun, J., Cao, X., Liu, M., Li, Y., & Liu, Y. (2021). Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-81079-w
  • Yoon, B. R., Lee, Y. J., Hong, H. D., Lee, Y. C., & Lee, O. H. (2012). Inhibitory effects of Panax ginseng treated with high temperature and high pressure on oxidative stress. The Korean Journal of Food and Nutrition, 25(4), 800–806. https://doi.org/10.9799/ksfan.2012.25.4.800
  • Yuan, Y., Hu, Y. B., Hu, C. X., Leng, J. Y., Chen, H. L., Zhao, X. S., & Zhou, Y. F. (2015). Overexpression and characterization of a glycoside hydrolase family 1 enzyme from Cellulosimicrobium cellulans sp 21 and its application for minor ginsenosides production. Journal of Molecular Catalysis B-Enzymatic, 120, 60–67. https://doi.org/10.1016/j.molcatb.2015.06.015
  • Yu, S. Y., Yoon, B. R., Lee, Y. J., Lee, J. S., Hong, H. D., Lee, Y. C., & Lee, O. H. (2014). Inhibitory effect of high temperature- and high pressure-treated red ginseng on exercise-induced oxidative stress in ICR mouse. Nutrients, 6(3), 1003–1015. https://doi.org/10.3390/nu6031003
  • Yu, H., Zhao, J., You, J., Li, J., Ma, H., & Chen, X. (2019). Factors influencing cultivated ginseng (Panax ginseng CA Meyer) bioactive compounds. PLos One, 14(10), e0223763. https://doi.org/10.1371/journal.pone.0223763
  • Zhao, X., Gao, J., Song, C., Fang, Q., Wang, N., Zhao, T., & Zhou, Y. (2012). Fungal sensitivity to and enzymatic deglycosylation of ginsenosides. Phytochemistry, 78, 65–71. https://doi.org/10.1016/j.phytochem.2012.02.027
  • Zhao, X., Gao, L., Wang, J., Bi, H., Gao, J., Du, X., & Tai, G. (2009). A novel ginsenoside Rb-1-hydrolyzing beta-D-glucosidase from cladosporium fulvum. Process Biochemistry, 44(6), 612–618. https://doi.org/10.1016/j.procbio.2009.01.016
  • Zhao, X., Wang, J., Li, J., Fu, L., Gao, J., Du, X., & Tai, G. (2009). Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus cladosporium fulvum (syn. Fulvia fulva). Journal of Industrial Microbiology & Biotechnology, 36(5), 721–726. https://doi.org/10.1007/s10295-009-0542-y