4,891
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Effect of combined application of organic manure and nitrogen fertilizer rates on yield and yield components of potato: A review

ORCID Icon
Article: 2217603 | Received 10 Mar 2023, Accepted 22 May 2023, Published online: 26 May 2023

References

  • Abd–Elrahman, S. H., Saudy, H. S., El–Fattah, D. A. A., & Hashem, F. A. E. (2022). Effect of irrigation water and organic fertilizer on reducing nitrate accumulation and boosting lettuce productivity. Journal of Soil Science and Plant Nutrition, 22(2), 2144–17. https://doi.org/10.1007/s42729-022-00799-8
  • Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, C. M., Aremu, C., Adegbite, K., & Akinpelu, O. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports, 10(1), 16083. https://doi.org/10.1038/s41598-020-73291-x
  • Agbede, T. M., & Oyewumi, A. (2022). Effects of Biochar, Poultry Manure and Their Mixture on Essential Nutrients of Sweet Potato Leaves and Storage Roots in Degraded Tropical Alfisols of Southwest Nigeria. Communications in Soil Science & Plant Analysis, 53(15), 1903–1916. https://doi.org/10.1080/00103624.2022.2069799
  • Akhtar, S., Shoaib, A., Javiad, I., Qaiser, U., & Tasadduq, R. (2023). Farmyard manure regulated the defense signalling network in mash bean by countering stress responses of inglorious couple of charcoal rot fungus and copper.
  • Alemayehu, M., Jemberie, M., Yeshiwas, T., Aklile, M., & Tejada Moral, M. (2020). Integrated application of compound NPS fertilizer and farmyard manure for economical production of irrigated potato (Solanum tuberosum L.) in highlands of Ethiopia. Cogent Food & Agriculture, 6(1), 1724385. https://doi.org/10.1080/23311932.2020.1724385
  • Allam, M., Radicetti, E., Quintarelli, V., Petroselli, V., Marinari, S., & Mancinelli, R. (2022). Influence of organic and mineral fertilizers on soil organic carbon and crop productivity under different tillage systems: A Meta-Analysis. Agriculture, 12(4), 464. https://doi.org/10.3390/agriculture12040464
  • Altieri, M. A. (1999). Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environment, Development and Sustainability, 1(3/4), 197–217. https://doi.org/10.1023/A:1010078923050
  • Ambaye, T. G., Chebbi, A., Formicola, F., Prasad, S., Gomez, F. H., Franzetti, A., & Vaccari, M. (2022). Remediation of soil polluted with petroleum hydrocarbons, and their reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere, 293, 133572. https://doi.org/10.1016/j.chemosphere.2022.133572
  • Ammar, E. E., Aioub, A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & El-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020
  • Asfaw, F. (2016). Effect of integrated soil amendment practices on growth and seed tuber yield of potato (Solanum tuberosum L.) at Jimma Arjo, Western Ethiopia. Journal of Natural Sciences Research, 6(15), 38–63. https://core.ac.uk/download/pdf/234656534.pdf
  • Asghari, M. T., Mir, R., & Fard, A. (2015). The effect of farm yard manure and nitrogen fertilizer on some characteristics of potato (Solanum tuberosum var. Agria). Biharean Biologist, 9(2), 81–84. http://biozoojournals.ro/bihbiol/index.html
  • Atanaw, T. (2021). Israel zewide. Fertility management on potato (Solanum tubersum L.). Crop Research & Reviews: Journal of Crop Science and Technology, 10(1), 33–46. https://doi.org/10.37591/RRJoCST
  • Awogbemi, O., Kallon, D. V. V., & Owoputi, A. O. (2022). Biofuel generation from potato peel waste: Current state and prospects. Recycling, 7(2), 23. https://doi.org/10.3390/recycling7020023
  • Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456
  • Badr, M., El-Tohamy, W., & Zaghloul, A. (2012). Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110, 9–15. https://doi.org/10.1016/j.agwat.2012.03.008
  • Baniuniene, A., & Zekaite, V. (2008). The effect of mineral and organic fertilizers on potato tuber yield and quality. Latvian Journal of Agronomy, 11(11), 202–206. https://llufb.llu.lv/conference/agrvestis/content/n11/AgrVestis-Nr11-202-206.pdf
  • Bashir, U., & Qureshi, F. (2014). Effect of nitrogen and farmyard manure on yield, nutrient content and quality of potato (Solanum tuberosum L.). International Journal Biology Life Science, 2(3), 786–791.
  • Bayu, W., Rethman, N., Hammes, P., & Alemu, G. (2006). Effects of farmyard manure and inorganic fertilizers on sorghum growth, yield, and nitrogen use in a semi-arid area of Ethiopia. Journal of Plant Nutrition, 29(2), 391–407. https://doi.org/10.1080/01904160500320962
  • Bordoloi, P. (2021). Vermicompost and integrated nutrient management approach for yield enhancement of capsicum (Capsicum annuum L.) under hill agro ecosystem of Meghalaya, North East India. Journal of Krishi Vigyan, 10(1), 309–313. https://doi.org/10.5958/2349-4433.2021.00112.4
  • Brown, S. L., Chaney, R. L., & Hettiarachchi, G. M. (2016). Lead in urban soils: A real or perceived concern for urban agriculture? Journal of Environmental Quality, 45(1), 26–36. https://doi.org/10.2134/jeq2015.07.0376
  • Brust, G. E. (2019). Management strategies for organic vegetable fertility, Safety and practice for organic food, Elsevier. 193–212.
  • Chen, J. -H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility, International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, Citeseer. 1–11.
  • Cheyne, I. (2007). Taming the precautionary principle in EC Law: Lessons from waste and GMO regulation. Journal for European Environmental & Planning Law, 4(6), 468–483. https://doi.org/10.1163/187601007X00064
  • Choudhary, R. C., Bairwa, H., Kumar, U., Javed, T., Asad, M., Lal, K., Mahawer, L., Sharma, S., Singh, P., Hassan, M. M., Abo-Shosha, A. A., Rajagopal, R., & Abdelsalam, N. R. (2022). Influence of organic manures on soil nutrient content, microbial population, yield and quality parameters of pomegranate (Punica granatum L.) cv. Bhagwa PloS One, 17(4), e0266675. https://doi.org/10.1371/journal.pone.0266675
  • Das, S. K., & Ghosh, G. K. (2022). Soil hydro-physical properties affected by biomass-derived biochar and organic manure: A low-cost technology for managing acidic mountain sandy soils of north eastern region of India. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-022-03107-7
  • Ddiba, D., Andersson, K., Rosemarin, A., Schulte-Herbrüggen, H., & Dickin, S. (2022). The circular economy potential of urban organic waste streams in low-and middle-income countries. Environment, Development and Sustainability, 24(1), 1116–1144. https://doi.org/10.1007/s10668-021-01487-w
  • De Corato, U. (2020). Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. The Science of the Total Environment, 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840
  • Deena, S. R., Vickram, S., Manikandan, S., Subbaiya, R., Karmegam, N., Ravindran, B., Chang, S. W., & Awasthi, M. K. (2022). Enhanced biogas production from food waste and activated sludge using advanced techniques–a review. Bioresource Technology, 355, 127234. https://doi.org/10.1016/j.biortech.2022.127234
  • Edwards, C. A., & Arancon, N. Q. (2022). The Use of Earthworms in Organic Waste Management and Vermiculture, Biology and Ecology of Earthworms. Springer.
  • Fageria, N., Filho, M. B., Moreira, A., & Guimarães, C. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044–1064. https://doi.org/10.1080/01904160902872826
  • Fahad, S., Chavan, S. B., Chichaghare, A. R., Uthappa, A. R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D. K., Kumar, V., Farooq, T. H., Ali, B., Sawant, A. V., Saud, S., Chen, S., & Poczai, P. (2022). Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability, 14(22), 14877. https://doi.org/10.3390/su142214877
  • Fernández-López, J., Botella-Martínez, C., de Vera C, N.R., Sayas-Barberá, M. E., Viuda-Martos, M., Sánchez-Zapata, E., & J A, P.Á. (2020). Vegetable soups and creams: Raw materials, processing, health benefits, and innovation trends. Plants, 9(12), 1769. https://doi.org/10.3390/plants9121769
  • Gautam, A., Guzman, J., Kovacs, P., & Kumar, S. (2022). Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Archives of Agronomy & Soil Science, 68(9), 1261–1273. https://doi.org/10.1080/03650340.2021.1887480
  • Getahun, B. B., Kassie, M. M., Visser, R. G., & van der Linden, C. G. (2020). Genetic diversity of potato cultivars for nitrogen use efficiency under contrasting nitrogen regimes. Potato Research, 63(2), 267–290. https://doi.org/10.1007/s11540-019-09439-8
  • Gitari, H. I., Gachene, C. K., Karanja, N. N., Kamau, S., Nyawade, S., & Schulte-Geldermann, E. (2019). Potato-legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant and Soil, 438(1–2), 447–460. https://doi.org/10.1007/s11104-019-04036-7
  • Gorfie, B. N., Tuhar, A. W., Shiberu Keraga, A., & Woldeyohannes, A. B. (2022). Effect of brewery wastewater irrigation on soil characteristics and lettuce (Lactuca sativa) crop in Ethiopia. Agricultural Water Management, 269, 107633. https://doi.org/10.1016/j.agwat.2022.107633
  • Harraq, A., Sadiki, K., Bourioug, M., & Bouabid, R. (2022). Organic fertilizers mineralization and their effect on the potato“Solanum tuberosum” performance in organic farming. Journal of the Saudi Society of Agricultural Sciences, 21(4), 255–266. https://doi.org/10.1016/j.jssas.2021.09.003
  • Hawkes, J. (1992). Biosystematics of the potato. The Potato Crop: The scientific basis for improvement. 13–64.
  • Hlisnikovský, L., Menšík, L., & Kunzová, E. (2021). The effect of soil-climate conditions, farmyard manure and mineral fertilizers on potato yield and soil chemical parameters. Plants, 10(11), 2473. https://doi.org/10.3390/plants10112473
  • Hou, Q., Lin, S., Ni, Y., Yao, L., Huang, S., Zuo, T., Wang, J., & Ni, W. (2022). Assembly of functional microbial communities in paddy soil with long-term application of pig manure under rice-rape cropping system. Journal of Environmental Management, 305, 114374. https://doi.org/10.1016/j.jenvman.2021.114374
  • Hu, X., Chen Yang, Y., Zhou, K., Tian, G., Liu, B., He, H., Zhang, L., Cao, Y., & Bian, B. (2022). Verification of agricultural cleaner production through rice-duck farming system and two-stage aerobic composting of typical organic waste. Journal of Cleaner Production, 337, 130576. https://doi.org/10.1016/j.jclepro.2022.130576
  • Islam, M. M., Akhter, S., Majid, N. M., Ferdous, J., & Alam, M. S. (2013). Integrated nutrient management for potato (‘Solanum tuberosum’) in grey terrace soil (Aric Albaquipt). Australian Journal of Crop Science, 7(9), 1235–1241. https://doi.org/10.3316/INFORMIT.619325254694927
  • Jahangir, M. M. R., Islam, S., Nitu, T. T., Uddin, S., Kabir, A. K. M. A., Meah, M. B., & Islam, R. (2021). Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy, 11(11), 2101. https://doi.org/10.3390/agronomy11112101
  • Karam, F., Amacha, N., Fahed, S., Asmar, T. E., & Domínguez, A. (2014). Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications. Agricultural Water Management, 142, 144–151. https://doi.org/10.1016/j.agwat.2014.05.007
  • Kaszycki, P., Głodniok, M., & Petryszak, P. (2021). Towards a bio-based circular economy in organic waste management and wastewater treatment–The Polish perspective. New Biotechnology, 61, 80–89. https://doi.org/10.1016/j.nbt.2020.11.005
  • Khan, I., Zada, S., Rafiq, M., Sajjad, W., Zaman, S., & Hasan, F. (2022). Phosphate solubilizing epilithic and endolithic bacteria isolated from clastic sedimentary rocks, Murree lower Himalaya, Pakistan. Archives of Microbiology, 204(6), 332. https://doi.org/10.1007/s00203-022-02946-2
  • Khoshgoftarmanesh, A. H., Schulin, R., Chaney, R. L., Daneshbakhsh, B., & Afyuni, M. (2010). Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30(1), 83–107. https://doi.org/10.1051/agro/2009017
  • Koch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2020). The importance of nutrient management for potato production Part I: Plant nutrition and yield. Potato Research, 63(1), 97–119. https://doi.org/10.1007/s11540-019-09431-2
  • Kocsis, T., Ringer, M., & Biró, B. (2022). Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Applied Sciences, 12(8), 4051. https://doi.org/10.3390/app12084051
  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  • Kumar, A., Bhattacharya, T., Mukherjee, S., & Sarkar, B. (2022). A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar, 4(1), 22. https://doi.org/10.1007/s42773-022-00148-z
  • Kumar, M., Chandran, D., Tomar, M., Bhuyan, D. J., Grasso, S., AGA, S., Carciofi, B. A. M., Senapathy, S., Dhumal, S., Singh, M., Senapathy, M., Changan, S., Dey, A., Pandiselvam, R., Mahato, D. K., Amarowicz, R., Rajalingam, S., Vishvanathan, M., Saleena, L. A. K., & Mekhemar, M. (2022). Valorization potential of tomato (Solanum lycopersicum L.) seed: Nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods. Horticulturae, 8(3), 265. https://doi.org/10.3390/horticulturae8030265
  • Kumari, A., Bhattacharya, B., Agarwal, T., Paul, V., & Chakkaravarthi, S. (2022). Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Research International, 156, 111172. https://doi.org/10.1016/j.foodres.2022.111172
  • Kumar, S., Sindhu, S. S., Kumar, R., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094
  • Kwon, S. -J., Kim, H. -R., Roy, S. K., Kim, H. -J., Boo, H. -O., Woo, S. -H., & Kim, H. -H. (2019). Effects of nitrogen, phosphorus and potassium fertilizers on growth characteristics of two species of bellflower (Platycodon grandiflorum). Journal of Crop Science and Biotechnology, 22(5), 481–487. https://doi.org/10.1007/s12892-019-0277-0
  • Le Pera, A., Sellaro, M., & Bencivenni, E. (2022). Composting food waste or digestate? Characteristics, statistical and life cycle assessment study based on an Italian composting plant. Journal of Cleaner Production, 350, 131552. https://doi.org/10.1016/j.jclepro.2022.131552
  • Liang, Z., Cao, B., Jiao, Y., Liu, C., Li, X., Meng, X., Shi, J., & Tian, X. (2022). Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter. Applied Soil Ecology, 171, 104324. https://doi.org/10.1016/j.apsoil.2021.104324
  • Liang, X., Chen, Y., Nie, Z., Ye, Y., Liu, J., Tian, G., Wang, G., & Tuong, T. (2013). Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices. Environmental Science & Pollution Research, 20(10), 6980–6991. https://doi.org/10.1007/s11356-012-1391-1
  • Liu, H., Du, X., Li, Y., Han, X., Li, B., Zhang, X., Li, Q., & Liang, W. (2022). Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. Journal of Cleaner Production, 347, 131323. https://doi.org/10.1016/j.jclepro.2022.131323
  • MacLaren, C., Mead, A., van Balen, D., Claessens, L., Etana, A., de Haan, J., Haagsma, W., Jäck, O., Keller, T., Labuschagne, J., Myrbeck, Å., Necpalova, M., Nziguheba, G., Six, J., Strauss, J., Swanepoel, P. A., Thierfelder, C., Topp, C. … Storkey, J. (2022). Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nature Sustainability, 5(9), 770–779. https://doi.org/10.1038/s41893-022-00911-x
  • Madhu, P., Sasireka, M., Samikannu, R., Vinoth, K., Kumar, A. U., Patil, P. P., Kaliappan, S., Gebrekidan, A. M., & Le, Q. V. (2022). Production and characterization of maximum liquid oil products through individual and copyrolysis of pressed neem oil cake and waste thermocol mixture. Advances in Polymer Technology, 2022, 1–11. https://doi.org/10.1155/2022/5258130
  • Mago, M., Gupta, R., Yadav, A., & Garg, V. K. (2022). Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. Bioresource Technology, 347, 126390. https://doi.org/10.1016/j.biortech.2021.126390
  • Margus, K., Eremeev, V., Loit, E., Runno-Paurson, E., Mäeorg, E., Luik, A., & Talgre, L. (2022). Impact of farming system on potato yield and tuber quality in Northern Baltic Sea climate conditions. Agriculture, 12(4), 568. https://doi.org/10.3390/agriculture12040568
  • Masarirambi, M. T., Mbokazi, B. M., Wahome, P. K., & Oseni, T. O. (2012). Effects of kraal manure, chicken manure and inorganic fertilizer on growth and yield of lettuce (Lactuca sativa L. var Commander) in a semi-arid environment. Asian Journal of Agricultural Sciences, 4(1), 58–64. https://www.researchgate.net/profile/Michael-Masarirambi/publication/268267006_Effects_of_Kraal_Manure_Chicken_Manure_and_Inorganic_Fertilizer_on_Growth_and_Yield_of_Lettuce_Lactuca_sativa_L_var_Commander_in_a_Semi-arid_Environment/links/5509382f0cf27e990e0e1037/Effects-of-Kraal-Manure-Chicken-Manure-and-Inorganic-Fertilizer-on-Growth-and-Yield-of-Lettuce-Lactuca-sativa-L-var-Commander-in-a-Semi-arid-Environment.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail
  • Massé, D. I., Talbot, G., & Gilbert, Y. (2011). On farm biogas production: A method to reduce GHG emissions and develop more sustainable livestock operations. Animal Feed Science and Technology, 166, 436–445. https://doi.org/10.1016/j.anifeedsci.2011.04.075
  • Mijena, G. M., Gedebo, A., Beshir, H. M., & Haile, A. (2022). Ensuring food security of smallholder farmers through improving productivity and nutrition of potato. Journal of Agriculture and Food Research, 10, 100400. https://doi.org/10.1016/j.jafr.2022.100400
  • Mota, G. F., de Sousa, I. G., de Oliveira, A. L. B., Cavalcante, A. L. G., da Silva Moreira, K., Cavalcante, F. T. T., da Silva Souza, J. E., Rafael de Aguiar Falcão, de Aguiar Falcão Ír, T. G., Bussons Rodrigues Valério, R., RBR, V., Cristina Freitas de Carvalho, S., Simão Neto, F., de França Serpa, J., Karolinny Chaves de Lima, R., Cristiane Martins de Souza, M., & dos Santos, J. C. S. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Research, 62, 102616. https://doi.org/10.1016/j.algal.2021.102616
  • Mrunalini, K., Behera, B., Jayaraman, S., Abhilash, P. C., Dubey, P. K., Swamy, G. N., Prasad, J. V. N. S., Rao, K. V., Krishnan, P., Pratibha, G., & Srinivasa Rao, C. (2022). Nature‐based solutions in soil restoration for improving agricultural productivity. Land Degradation & Development, 33(8), 1269–1289. https://doi.org/10.1002/ldr.4207
  • Muleta, H. D., & Aga, M. C. (2019). Role of nitrogen on potato production: A review. Journal of Plant Sciences, 7(2), 36–42. https://doi.org/10.11648/j.jps.20190702.11
  • Muluneh, M. W., Talema, G. A., Abebe, K. B., Dejen Tsegaw, B., Kassaw, M. A., & Teka Mebrat, A. (2022). Determinants of organic fertilizers utilization among smallholder farmers in South Gondar zone, Ethiopia. Environmental Health Insights, 16, 11786302221075448. https://doi.org/10.1177/11786302221075448
  • Munnaf, M. A., Haesaert, G., & Mouazen, A. (2021). Map-based site-specific seeding of seed potato production by fusion of proximal and remote sensing data. Soil and Tillage Research, 206, 104801. https://doi.org/10.1016/j.still.2020.104801
  • Munyaneza, J. E., & Bizimungu, B. (2022). Management of potato pests and diseases in Africa. Insect Pests of Potato, 407–426. https://doi.org/10.1016/B978-0-12-821237-0.00016-0
  • Muthoni, J. (2016). Soil fertility situation in potato producing Kenyan highlands Case of KALRO-Tigoni. International Journal of Horticulture, 6. https://doi.org/10.5376/ijh.2016.06.0025
  • Nedunchezhiyan, M., Suja, G., & Ravi, V. (2022). Tropical root-and tuber crops-based cropping systems—a review. Current Horticulture, 10, 14–22.
  • Nyiraneza, J., Chen, D., Fraser, T., & Comeau, L. -P. (2021). Improving soil quality and potato productivity with manure and high-residue cover crops in Eastern Canada. Plants, 10(7), 1436. https://doi.org/10.3390/plants10071436
  • Nyiraneza, J., Peters, R. D., Rodd, V. A., Grimmett, M. G., & Jiang, Y. (2015). Improving productivity of managed potato cropping systems in Eastern Canada: Crop rotation and nitrogen source effects. Agronomy Journal, 107(4), 1447–1457. https://doi.org/10.2134/agronj14.0430
  • Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, 2, 1–20. https://doi.org/10.1007/978-3-030-61010-4_1
  • Pervez, M. A., Ayyub, C. M., Shaheen, M. R., & Noor, M. A. (2013). Determination of physiomorphological characteristics of potato crop regulated by potassium management. Pakistan Journal of Agriculture Sciences, 50(4). https://go.gale.com/ps/i.do?id=GALE%7CA360573366&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=05529034&p=AONE&sw=w&userGroupName=anon~39c12c9b&aty=open+web+entry
  • Pimentel, D., & Burgess, M. (2014). An environmental, energetic and economic comparison of organic and conventional farming systems. Integrated Pest Management: Pesticide Problems, 3, 141–166. https://doi.org/10.1007/978-94-007-7796-5_6
  • Prativa, K., & Bhattarai, B. (2011). Effect of integrated nutrient management on the growth, yield and soil nutrient status in tomato. Nepal Journal of Science and Technology, 12, 23–28. https://doi.org/10.3126/njst.v12i0.6474
  • Rani, T. S., Umareddy, R., Ramulu, C., & Kumar, T. S. (2021). Green Manurs and Grean leaf manures for soil fertility improvement: A review. Journal of Pharmacognosy & Phytochemistry, 10(5), 190–196. https://www.phytojournal.com/archives/2021.v10.i5.14196/green-manurs-and-grean-leaf-manures-for-soil-fertility-improvement-a-review
  • Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301
  • Rather, R. A., Wani, A. W., Mumtaz, S., Padder, S. A., Khan, A. H., Almohana, A. I., Almojil, S. F., Alam, S. S., & Baba, T. R. (2022). Bioenergy: A foundation to environmental sustainability in a changing global climate scenario. Journal of King Saud University-Science, 34(1), 101734. https://doi.org/10.1016/j.jksus.2021.101734
  • Richardson, A. E., Barea, J. -M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Springer.
  • Rubatzky, V. E., Yamaguchi, M., Rubatzky, V. E., & Yamaguchi, M. (1997). Other underground starchy vegetables. World Vegetables: Principles, Production, and Nutritive Values, 204–234. https://link.springer.com/book/9780834216877
  • Rubio, J., Fdez-Güelfo, L., Romero-García, L., Wilkie, A., & García-Morales, J. (2022). Start-up of the mesophilic anaerobic co-digestion of two-phase olive-mill waste and cattle manure using volatile fatty acids as process control parameter. Fuel, 325, 124901. https://doi.org/10.1016/j.fuel.2022.124901
  • Rynk, R., Schwarz, M., Richard, T. L., Cotton, M., Halbach, T., & Siebert, S. (2022). Compost feedstocks, the Composting Handbook, Elsevier. 103–157.
  • Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., & Chojnacka, K. (2022). The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere, 295, 133799. https://doi.org/10.1016/j.chemosphere.2022.133799
  • Sandhu, A. S., & Sandhu, A. S. (2023). Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India. Energy, 269, 126755. https://doi.org/10.1016/j.energy.2023.126755
  • Sarker, T. C., Zotti, M., Fang, Y., Giannino, F., Mazzoleni, S., Bonanomi, G., Cai, Y., & Chang, S. X. (2022). Soil aggregation in relation to organic amendment: A synthesis. Journal of Soil Science and Plant Nutrition, 22(2), 2481–2502. https://doi.org/10.1007/s42729-022-00822-y
  • Selim, M. M. (2020). Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. International Journal of Agronomy, 2020, 1–14. https://doi.org/10.1155/2020/2821678
  • Selim, S., Akhtar, N., El Azab, E., Warrad, M., Alhassan, H. H., Abdel-Mawgoud, M., Al Jaouni, S. K., & Abdelgawad, H. (2022). Innovating the synergistic assets of β-amino butyric acid (BABA) and selenium nanoparticles (SeNps) in improving the growth, nitrogen metabolism, biological activities, and nutritive value of Medicago interexta sprouts. Plants, 11(3), 306. https://doi.org/10.3390/plants11030306
  • Shahi Khalaf Ansar, B., Kavusi, E., Dehghanian, Z., Pandey, J., Asgari Lajayer, B., Price, G. W., & Astatkie, T. (2022). Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environmental Science & Pollution Research, 1–29. https://doi.org/10.1007/s11356-022-21283-x
  • Shetty, P. (2009). Incorporating nutritional considerations when addressing food insecurity. Food Security, 1(4), 431–440. https://doi.org/10.1007/s12571-009-0039-6
  • Shi, X., Luo, X., Jiao, J. J., & Zuo, J. (2022). Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms. Water Research, 219, 118620. https://doi.org/10.1016/j.watres.2022.118620
  • Silbergeld, E. K., & Nachman, K. (2008). The environmental and public health risks associated with arsenical use in animal feeds. Annals of the New York Academy of Sciences, 1140(1), 346–357. https://doi.org/10.1196/annals.1454.049
  • Singh, M., Singh, V., & Reddy, K. S. (2001). Effect of integrated use of fertilizer nitrogen and farmyard manure or green manure on transformation of N, K and S and productivity of rice-wheat system on a Vertisol. Journal of the Indian Society of Soil Science, 49(3), 430–435. https://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=49&issue=3&article=007
  • Smith, L. G., Kirk, G. J., Jones, P. J., & Williams, A. G. (2019). The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nature Communications, 10(1), 4641. https://doi.org/10.1038/s41467-019-12622-7
  • Smith, D., Macrae, M., Kleinman, P., Jarvie, H., King, K., & Bryant, R. (2019). The latitudes, attitudes, and platitudes of watershed phosphorus management in North America. Journal of Environmental Quality, 48(5), 1176–1190. https://doi.org/10.2134/jeq2019.03.0136
  • Sofo, A., Zanella, A., & Ponge, J. F. (2022). Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use and Management, 38(2), 1085–1112. https://doi.org/10.1111/sum.12702
  • Soni, R., Gupta, R., Agarwal, P., & Mishra, R. (2022). Organic Farming: A Sustainable Agricultural Practice. Vantage: Journal of Thematic Analysis, 3, 21–44. https://doi.org/10.52253/vjta.2022.v03i01.03
  • Srivastava, A., & Ngullie, E. (2009). Integrated nutrient management: Theory and practice. Dynamic Soil Dynamic Plant, 3(1), 1–30.
  • Sroufe, R., & Watts, A. (2022). Pathways to agricultural decarbonization: Climate change obstacles and opportunities in the US. Resources Conservation & Recycling, 182, 106276. https://doi.org/10.1016/j.resconrec.2022.106276
  • Stewart, Z. P., Pierzynski, G. M., Middendorf, B. J., Prasad, P. V., & Dhankher, O. (2020). Approaches to improve soil fertility in sub-Saharan Africa. Journal of Experimental Botany, 71(2), 632–641. https://doi.org/10.1093/jxb/erz446
  • Struik, P. C. (2007). Above-ground and below-ground plant development, Potato biology and biotechnology, Elsevier. 219–236.
  • Suryawanshi, P., & Pagar, V. (2022). Organic Nutrient, Resources and Its Fortification. Advances in Agricultural and Horticultural Sciences, 171. https://www.researchgate.net/profile/Tejpal-Dahiya/publication/358899022_Biofloc_Technology_An_emerging_and_innovative_approach_for_sustainable_aquaculture_productivity/links/6253ec66ef0134206669a186/Biofloc-Technology-An-emerging-and-innovative-approach-for-sustainable-aquaculture-productivity.pdf#page=180
  • Tadesse, A., & Negash, N. (2022). Prevalence and economic connotation of bovine and caprine hydatidosis at Abergele International Export Slaughterhouse, Mekele, Tigray Region. Ethiopian Veterinary Journal, 26(2), 38–56. https://doi.org/10.4314/evj.v26i2.3
  • Tammam, A. A., Rabei Abdel Moez Shehata, M., Pessarakli, M., & El-Aggan, W. H. (2023). Vermicompost and its role in alleviation of salt stress in plants–I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 46(7), 1446–1457. https://doi.org/10.1080/01904167.2022.2072741
  • Tan, X., Xie, G. -J., Nie, W. -B., Xing, D. -F., Liu, B. -F., Ding, J., & Ren, N. -Q. (2022). Fe (III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Critical Reviews in Environmental Science and Technology, 52(16), 2962–2994. https://doi.org/10.1080/10643389.2021.1903788
  • Tein, B., Kauer, K., Eremeev, V., Luik, A., Selge, A., & Loit, E. (2014). Farming systems affect potato (Solanum tuberosum L.) tuber and soil quality. Field Crops Research, 156, 1–11. https://doi.org/10.1016/j.fcr.2013.10.012
  • Thakur, N., Nigam, M., Tewary, R., Rajvanshi, K., Kumar, M., Shukla, S. K., Mahmoud, G. A. E., & Gupta, S. (2022). Drivers for the behavioural receptiveness and non-receptiveness of farmers towards organic cultivation system. Journal of King Saud University - Science, 34(5), 102107. https://doi.org/10.1016/j.jksus.2022.102107
  • Thornton, M. (2020). Potato growth and development. Potato Production Systems. 19–33.
  • Tolessa, E. S. (2018). Importance, nutrient content and factors affecting nutrient content of potato. American Journal of Food, Nutrition and Health, 3(3), 37–41. http://www.aascit.org/journal/ajfnh
  • Trobe, M., Blesl, J., Vareka, M., Schreiner, T., & Breinbauer, R. (2022). A Modular Synthesis of Teraryl‐Based α‐Helix Mimetics, Part 4: Core Fragments with Two Halide Leaving Groups Featuring Side Chains of Proteinogenic Amino Acids. European Journal of Organic Chemistry, 2022(17), e202101279. https://doi.org/10.1002/ejoc.202101279
  • Tyagi, J., Ahmad, S., & Malik, M. (2022). Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science & Technology, 19(11), 11649–11672. https://doi.org/10.1007/s13762-022-04027-9
  • Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., & Datta, A. (2019). Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy, 156(2019), 109–157. https://doi.org/10.1016/bs.agron.2019.02.002
  • Van Grinsven, H. J., Erisman, J. W., De Vries, W., & Westhoek, H. (2015). Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environmental Research Letters, 10(2), 025002. https://doi.org/10.1088/1748-9326/10/2/025002
  • Verma, K., Sharma, P., & Saini, S. P. (2022). Impact of Integrated Nutrient Management in Enhancing the Growth and Yield of Crops. Vigyan Varta, 3(9), 83–93. https://www.vigyanvarta.com/adminpanel/upload_doc/VV_0922_24.pdf
  • Vollmer, R., Villagaray, R., Cárdenas, J., Castro, M., Chávez, O., Anglin, N. L., & Ellis, D. (2017). A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). Vitro Cellular & Developmental Biology-Plant, 53(4), 309–317. https://doi.org/10.1007/s11627-017-9846-1
  • Wakawa, L. D., Musa, I., Abdulhamid, A. S., & Amininim, A. (2022). Comparative evaluation of animal manures and levels of applications on the growth performance of Diospyros mespiliformis Hochst ex A. Rich seed-lings. International Journal of Recycling Organic Waste in Agriculture. https://doi.org/10.30486/ijrowa.2022.1964869.1520
  • Wang, H., Köbke, S., & Dittert, K. (2020). Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Global Ecology and Conservation, 22, e00933. https://doi.org/10.1016/j.gecco.2020.e00933
  • Wang, F., Miao, L., Wang, Y., Zhang, M., Zhang, H., Ding, Y., & Zhu, W. (2022). Using cow dung and mineral vermireactors to produce vermicompost for use as a soil amendment to slow Pb2+ migration. Applied Soil Ecology, 170, 104299. https://doi.org/10.1016/j.apsoil.2021.104299
  • Wang, X., Xu, M., Lin, B., Bodirsky, B. L., Xuan, J., Dietrich, J. P., Stevanović, M., Bai, Z., Ma, L., Jin, S., Fan, S., Lotze-Campen, H., & Popp, A. (2023). Reforming China’s fertilizer policies: Implications for nitrogen pollution reduction and food security. Sustainability Science, 18(1), 407–420. https://doi.org/10.1007/s11625-022-01189-w
  • Weifeng, S., Aiping, S., Jiai, L., Wenchong, S., Mingcong, L., Zhang, W., Zuzhang, L., Guangrong, L., Fusheng, Y., Zhang, S., LIU, Z., & GAO, Z. (2022). Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere, 32(4), 637–648. https://doi.org/10.1016/S1002-0160(21)60047-4
  • Wohleb, C. H., Knowles, N. R., & Pavek, M. J. (2014). Plant growth and development, the potato: Botany, production and uses. CABI Wallingford UK.
  • Wubet, G. K., Zemedu, L., & Tegegne, B. (2022). Value chain analysis of potato in Farta District of South Gondar Zone, Amhara National Regional State of Ethiopia. Heliyon, 8(3), e09142. https://doi.org/10.1016/j.heliyon.2022.e09142
  • Xu, X., He, P., Qiu, S., Zhao, S., Ding, W., & Zhou, W. (2022). Nutrient management increases potato productivity and reduces environmental risk: Evidence from China. Journal of Cleaner Production, 369, 133357. https://doi.org/10.1016/j.jclepro.2022.133357
  • Yao, Z., Zhang, D., Liu, N., Yao, P., Zhao, N., Li, Y., Zhang, S., Zhai, B., Huang, D., Wang, Z., Cao, W., Adl, S., & Gao, Y. (2019). Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil and Tillage Research, 191, 108–116. https://doi.org/10.1016/j.still.2019.03.022
  • Yigrem, S., Beyene, F., Tegegne, A., & Gebremedhin, B. (2008). Dairy production, processing and marketing systems of Shashemene-Dilla area, IPMS Working Paper. https://hdl.handle.net/10568/485
  • Yong, K. J., & Wu, T. Y. (2022). Second-generation bioenergy from oilseed crop residues: Recent technologies, techno-economic assessments and policies. Energy Conversion & Management, 267, 115869. https://doi.org/10.1016/j.enconman.2022.115869
  • Zelalem, A., Tekalign, T., & Nigussie, D. (2009). Response of potato (Solanum tuberosum L.) to different rates of nitrogen and phosphorus fertilization on vertisols at Debre Berhan, in the central highlands of Ethiopia. African Journal of Plant Science, 3(2), 016–024. http://www.academicjournals.org/AJPS
  • Zelleke, G., Agegnehu, G., Abera, D., & Rashid, S. (2019). Fertilizer and soil fertility potential in Ethiopia. Gates Open Resourse, 3, 482. https://doi.org/10.21955/gatesopenres.1115635.1