559
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Study on the flow field characteristics of bulk grain pipeline based on gas-solid heterogeneous coupling

, , , &
Article: 2219472 | Received 22 Feb 2023, Accepted 25 May 2023, Published online: 09 Jun 2023

References

  • Blessing, C., & Huixiong, L. (2007). Multiphase flow and its application. Jiaotong University Press.
  • Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science, 66(5), 834–19. https://doi.org/10.1016/j.ces.2010.11.026
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • Cunrong, W. (2014). Quality and safety problems and countermeasures existing in grain purchase and storage, logistics and transportation. Journal of Food Science and Technology, 32(4), 11–15.
  • Derksen, J. J. (2005). Simulations of confined turbulent vortex flow. Computers & Fluids, 34(3), 301–318. https://doi.org/10.1016/j.compfluid.2004.06.001
  • Fanyi, L. (2018). Discrete element modeling of wheat particles and short stalks in the cleaning device. Northwest A & F University.
  • Fan, L.-S., Zhu, C., Xuexu, Z. (2018). Principle of gas-solid flow. Upper/(US). Science Press. 9787030582720.
  • Jianping, L., Zhou, F., Yang, D., Bingchen, Y., & Li, Y. (2020). Effect of swirling flow on large coal particle pneumatic conveying. Powder Technology, 362(C), 745–758. https://doi.org/10.1016/j.powtec.2019.11.112
  • Jiawei, Z. (2017). Research on the mechanism and performance of coal particle cyclone pneumatic conveying (pp. 51–55). China University of Mining and Technology.
  • Ji, Y., Liu, S. Y., & Li, J. P. (2018). Experimental and numerical studies on dense-phase pneumatic conveying of spraying material in venturi. Powder Technology, 339, 419–433. https://doi.org/10.1016/j.powtec.2018.08.031
  • Nasrollahi, A., Salehi Neyshabouri, S. A. A., Ahmadi, G., & Namin, M. M. (2008). Numerical simulation of particle saltation process. Particulate Science and Technology, 26(6), 529–550. https://doi.org/10.1080/02726350802498723
  • Salman, A. D., Gorham, D. A., Szabó, M., & Hounslow, M. J. (2005). Spherical particle movement in dilute pneumatic conveying. Powder Technology, 153(1), 43–50. https://doi.org/10.1016/j.powtec.2005.01.023
  • Salman, A. D., Houslow, M. J., & Verba, A. (2002). Particle fragmentation in dilute phase pneumaticconveying. Powder Technology, 126(2), 109–115. https://doi.org/10.1016/S0032-59100200048-7
  • Wei, W., Qingliang, G., & Jiansheng, Z. (2011). Experimental study on pneumatic transport of pressurized pulverized coal. Journal of Tsinghua University, 51(2), 277–281. https://doi.org/10.16511/j.cnki.qhdxxb.2011.02.005
  • Wen, C. Y., & Yu, Y. H. (1966). Mechanics of fluidization. Chemical Engineering Program Symp Service, 62, 100–111. https://doi.org/10.1234/12345678
  • Xihua, S. (2000). Study on hydraulic characteristics of spiral flow and particle suspension mechanism of horizontal axial circular tube (pp. 7–13). University of Technology.
  • Yun, J. (2019). Study on pneumatic conveying characteristics of long-distance pipeline [D]. China University of Mining and Technology.
  • Yun, Z., Xiaoping, C., & Cai, L. (2010). Experimental study on dense-phase pneumatic transport of high-pressure pulverized coal [J]. Journal of Engineering Thermophysics, 31(1), 76–79.
  • Zhihua, L., Yanqing, L., Lei, J., & Liu, J. (2010). Based on the design of the optimized carbon black-dense phase pneumatic conveying system. Fluid machinery, 38(2), 41–44.
  • Zhou, J., Han, X., Jing, S., & Liu, Y. Efficiency and stability of lump coal particles swirling flow pneumatic conveying system. Chemical Engineering Research & Design, 2–103. https://doi.org/10.1016/j.cherd.2020.03.006
  • Zhou, J. W., Shangguan, L. J., Gao, K. D., & Jing, S. X. (2020). Pickup characteristics of lump nonspherical particles in an oscillating airflow. Industrial & Engineering Chemistry Research, 59(31), 14145–14156. https://doi.org/10.1021/acs.iecr.0c03045