2,042
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Fruits and vegetables contaminated with particles of heavy metals: A narrative review to explore the use of electromagnetic fields as an alternative treatment method

ORCID Icon &
Article: 2231686 | Received 20 Feb 2023, Accepted 27 Jun 2023, Published online: 04 Jul 2023

References

  • Ali, M. H. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38(1), 31–12. https://doi.org/10.1016/j.ejar.2012.08.002
  • Araujo, S. D. S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., & Balestrazzi, A. (2016). Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers in Plant Science, 7, 646. https://doi.org/10.3389/fpls.2016.00646
  • Balakhnina, T., Bulak, P., Nosalewicz, M., Pietruszewski, S., & Wlodarczyk, T. (2015). The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiologiae Plantarum, 37(3), 58–68. https://doi.org/10.1007/s11738-015-1802-2
  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972
  • Bathla, S., & Jain, T. (2016). Heavy metals toxicity. International Journal of Health Sciences & Research, 6(5), 361–368.
  • Bora, F. D., Bunea, A., Pop, S. R., Baniță, S. I., Duşa, D. Ş., Chira, A., & Bunea, C. I. (2022). Quantification and reduction in heavy metal residues in some fruits and vegetables: A case study Galați County, Romania. Horticulturae, 8(11), 1034. https://doi.org/10.3390/horticulturae8111034
  • Bortey-Sam, N., Nakayama, S. M. M., Ikenaka, Y., Akoto, O., Baidoo, E., Yohannes, Y. B., Mizukawa, H., & Ishizuka, M. (2015). Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and Target Hazard Quotients (THQs). Journal of Ecotoxicology and Environmental Safety, 111, 160–167. https://doi.org/10.1016/j.ecoenv.2014.09.008
  • Bourioug, M., Gimbert, F., Alaoui-Sehmer, L., Benbrahim, M., Aleya, L., & Alaoui-Sosse, B. (2015). Sewage sludge application in a plantation: Effects on trace metal transfer in soil–plant–snail continuum. Science of the Total Environment, 502, 309–314. https://doi.org/10.1016/j.scitotenv.2014.09.022
  • Bulak, P., Lata, L., Plak, A., Wiącek, D., Strobel, W., Walkiewicz, A., Pietruszewski, S., & Bieganowski, A. (2018). Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction. International Journal of Phytoremediation, 20(4), 338–342. https://doi.org/10.1080/15226514.2017.1381943
  • Chandra, R., & Kumar, V. (2017). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science and Pollution Research, 24(3), 2605–2619. https://doi.org/10.1007/s11356-016-8022-1
  • Chen, Y., Chen, D., & Qiang, L. (2017). Exposure to a magnetic field or laser radiation ameliorates effects of Pb and Cd on physiology and growth of young wheat seedlings. Journal of Photochemistry and Photobiology, 169, 171–177. https://doi.org/10.1016/j.jphotobiol.2017.03.012
  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied & Environmental Soil Science, 752708, 1–12. https://doi.org/10.1155/2014/752708
  • Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. (2016). A review of health risks and pathways for exposure to waste water use in agriculture. Environmental Health Perspective, 124(7), 900–909. https://doi.org/10.1289/ehp.1509995
  • Elbagermi, M. A., Edwards, H. G. M., & Alajtal, A. I. (2012). Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. ISRN Analytical Chemistry, 2012, 1–5. https://doi.org/10.5402/2012/827645
  • Elbagermi, M. A., Edwards, H. G. M., & Alajtal, A. I. (2014). Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. International Scholarly Research Network: Analytical Chemistry, 5, 827645.
  • Elgallal, M., Fletcher, L., & Evans, B. (2016). Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review of. Agricultural Water Management, 177, 419–431. https://doi.org/10.1016/j.agwat.2016.08.027
  • El-Kady, A. A., & Abdel-Wahhab, M. A. (2018). Occurrence of trace metals in foodstuffs and their health impact. Trends in Food Science and Technology, 75, 36–45. https://doi.org/10.1016/j.tifs.2018.03.001
  • Franca, F. C. S. S., Albuuerque, A. M. A., Almeida, A. C., Silveira, P. B., Filho, C. A., Hazin, C. A., & Honorato, E. V. (2017). Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry, 215, 171–176. https://doi.org/10.1016/j.foodchem.2016.07.168
  • Gola, D., Malik, A., Shaikh, Z. A., & Sreekrishnan, T. R. (2016). Impact of heavy metal containing waste water on agricultural soil and produce: Relevance of biological treatment. Environmental Processes, 3(4), 1063–1080. https://doi.org/10.1007/s40710-016-0176-9
  • Gonzalez Henao, S., & Ghneim-Herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science, 9, 15. https://doi.org/10.3389/fenvs.2021.604216
  • Heidarieh, M., Maragheh, M. G., Shamami, M. A., Behgar, M., Ziaei, F., & Akbari, Z. (2013). Evaluate of heavy metal concentration in shrimp (Penaeus semisulcatus) and crab (Portunus pelagicus) with INAA method. Springer Plus, 2(1), 72. https://doi.org/10.1186/2193-1801-2-72
  • Henriques, B., Lopes, C. B., Figueira, P., Rocha, L. S., Duarte, A. C., & Vale, C. (2017). Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere, 171, 208–227. https://doi.org/10.1016/j.chemosphere.2016.12.086
  • Hossain, M. A., Uddin, M. K., Molla, A., Afrad, M., Rahman, M., & Rahman, G. (2010). Impact of industrial effluents discharges on degradation of natural resources and threat to food security. The Agriculturists, 8(2), 80–87. https://doi.org/10.3329/agric.v8i2.7581
  • Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability, 9(10), 1734. https://doi.org/10.3390/su9101734
  • Jia, J., Wang, X., Lv, J., Gao, S., & Wang, G. (2015). Alternating magnetic field prior to cutting reduces wound responses and maintains fruit quality of cut Cucumis melo L. cv Hetao. The Open Biotechnology Journal, 9(1), 230–235. https://doi.org/10.2174/1874070701509010230
  • Jin, X., Yamei, J., Xueming, X., & Yang, N. (2017). Electrofluidic pretreatment for enhancing essential oil extraction from citrus fruit peel waste. Journal of Cleaner Production, 159, 85–94. https://doi.org/10.1016/j.jclepro.2017.05.010
  • Jolly, Y. N., Islam, A., & Akbar, S. (2013). Transfer of metals from soil to vegetables and possible health risk assessment. Springer Plus, 2(1), 385–391. https://doi.org/10.1186/2193-1801-2-385
  • Kabatapendias, & Pendias. (2011). Trace elements in plants. USA Press. https://doi.org/10.1201/b10158
  • Khetsha, Z. P., Sedibe, M. M., Pretorius, R. J., Rathebe, P. C., & Moloantoa, K. (2022). Using biostimulants containing phytohormones to recover hail-damaged essential oil plants. Revisiting Plant Biostimulants IntechOpen. 978-1-80355-553-9. https://doi.org/10.5772/intechopen.98125
  • Koleayo, O. O., Kelechi, L. N., Olutunde, O. B., & Olapeju, A. A. (2017). Nutritional composition and heavy metal content of selected fruits in Nigeria. Journal of Agriculture and Environment for International Development, 11(1), 123–139.
  • Kotuła, M., Kapusta Duch, J., & Smole, N. S. (2022). Evaluation of selected heavy metals contaminants in the fruits and leaves of organic conventional and wild raspberry (Rubus idaeus L.). Applied Sciences, 12(15), 7610. https://doi.org/10.3390/app12157610
  • Kumar, A., Chaturvedi, A. K., Yadav, K., Arunkumar, K. P., Malyan, S. K., Raja, P., Kumar, R., Khan, S. A., Yadav, K. K., Rana, K. L., Kour, D., Yadav, N., & Yadav, A. N. (2019). Fungal phytoremediation of heavy metal-contaminated resources: Current scenario and future prospects. In Recent advancement in white biotechnology through fungi (pp. 437–461). Springer International Publishing. https://doi.org/10.1007/978-3-030-25506-0_18
  • Li, F., Shi, W., Jin, Z. F., Wu, H., & Sheng, D. G. (2017). Excessive uptake of heavy metals by greenhouse vegetables. Journal of Geochemical Exploration, 173, 76–84. https://doi.org/10.1016/j.gexplo.2016.12.002
  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2015). Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments, 15(1), 163–178. https://doi.org/10.1007/s11368-014-0937-x
  • Manzoor, J., Sharma, M., & Wani, K. A. (2018). Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. Journal of Plant Nutrition, 41(13), 1744–1763. https://doi.org/10.1080/01904167.2018.1462382
  • Mawari, G., Kumar, N., Sarkar, S., Daga, M. K., Singh, M. M., Joshi, T. K., & Khan, N. A. (2022). Heavy metal accumulation in fruits and vegetables and human health risk assessment: Findings from Maharashtra, India. Journal of Ecological Public Health, 16, 117863022211191. https://doi.org/10.1177/11786302221119151
  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. Environmental Biotechnology: For Sustainable Future, 103–125.
  • Mokarram, M., Pourghasemi, H. R., & Zhang, H. (2020). Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves. Frontiers of Environmental Science & Engineering, 14(6), 114. https://doi.org/10.1007/s11783-020-1331-0
  • Nathan, R. J., Barr, D., & Rosengren, R. J. (2022). Six fruit and vegetable peel beads for the simultaneous removal of heavy metals by biosorption. Environmental Technology, 43(13), 1935–1952. https://doi.org/10.1080/09593330.2020.1858183
  • Noor, I., Sohail, H., Sun, J., Nawaz, M. A., Li, G., Hasanuzzaman, M., & Liu, J. (2022). Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 303, 135196. https://doi.org/10.1016/j.chemosphere.2022.135196
  • Onakpa, M. M., Njan, A. A., & Kalu, O. C. (2018). A review of heavy metal contamination of food crops in Nigeria. Annals of Global Health, 84(3), 488. https://doi.org/10.29024/aogh.2314
  • Pandey, G., & Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17–23.
  • Prabhat, K. R., Sang, S. L., Ming, Z., Yiu, F. T., & Ki-Hyun, K. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067
  • Qureshi, A. S., Hussain, M. I., Ismail, S., & Khan, Q. M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54–61. https://doi.org/10.1016/j.chemosphere.2016.07.073
  • Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology & Molecular Biology of Plants, 25(5), 1107–1119. https://doi.org/10.1007/s12298-019-00699-9
  • Rai, P. K. (2016a). Biomagnetic monitoring through roadside plants of an indo-Burma hot spot region. Elsevier.
  • Rai, P. K. (2016b). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety, 129, 120–136. https://doi.org/10.1016/j.ecoenv.2016.03.012
  • Rajczykowski, K., & Loska, K. (2018). Stimulation of heavy metal adsorption process by using a strong magnetic field. Water, Air, & Soil Pollution, 229(1), 1–7. https://doi.org/10.1007/s11270-017-3672-2
  • Ravindran, A., Sajayan, A., Priyadharshini, G. B., Selvin, J., & Kiran, G. S. (2020). Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Frontiers in Microbiology, 11, 222. https://doi.org/10.3389/fmicb.2020.00222
  • Rivera, F. L., Palomares, F. J., Herrasti, P., & Mazario, E. (2019). Improvement in heavy metal removal from wastewater using an external magnetic inductor. Nanomaterials, 9(11), 1508. https://doi.org/10.3390/nano9111508
  • Rizvi, A., Ahmed, B., Khan, M. S., Rajput, V. D., Umar, S., Minkina, T., & Lee, J. (2022). Maize associated bacterial microbiome linked mitigation of heavy metal stress: A multidimensional detoxification approach. Environmental and Experimental Botany, 200, 104911. https://doi.org/10.1016/j.envexpbot.2022.104911
  • Rusin, M., Domagalska, J., Rogala, D., Razzaghi, M., & Szymala, I. Concentration of cadmium and lead in vegetables and fruits. (2021). Scientific Reports, 11(1), 11913. CrossRef. https://doi.org/10.1038/s41598-021-91554-z
  • Ruzaidy, N., & Azura, A. (2020). Heavy metal contamination in vegetables and its detection: A review. Science Heritage Journal, 4(1), 01–05. https://doi.org/10.26480/gws.01.2020.01.05
  • Saletnik, B., Zaguła, G., Saletnik, A., Bajcar, M., Słysz, E., & Puchalski, C. (2022). Method for prolonging the shelf life of apples after storage. Applied Sciences, 12(8), 3975. https://doi.org/10.3390/app12083975
  • Sankhla, M. S., & Kumar, R. (2019). Contaminant of heavy metals in groundwater & its toxic effects on human health & environment. SSRN Electronic Journal, 3(7), 945–949. https://doi.org/10.2139/ssrn.3490718
  • Sharma, T., Banerjee, B. D., Yadav, C. S., Gupta, P., & Sharma, S. (2014). Heavy metal levels in adolescent and maternal blood: Association with risk of hypospadias. International Scholarly Research Notices, 2014, 1–5. https://doi.org/10.1155/2014/714234
  • Shu, G., Zheng, Q., Chen, L., Jiang, F., Dai, C., Hui, Y., & Du, G. (2021). Screening and identification of Lactobacillus with potential cadmium removal and its application in fruit and vegetable juices. Food Control, 126, 108053. https://doi.org/10.1016/j.foodcont.2021.108053
  • Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253. https://doi.org/10.4103/0253-7613.81505
  • Skalnaya, M. G., Tinkov, A. A., Lobanova, Y. N., Chang, J. S., & Skalny, A. V. (2019). Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. Journal of Trace Elements in Medicine and Biology, 56, 124–130. https://doi.org/10.1016/j.jtemb.2019.08.009
  • Tasrina, R. C., Rowshon, A., Amr, M., Rafiqul, I., & Ali, M. P. (2015). Heavy metals contamination in vegetables and its growing soil. Environmental Analytical Chemistry, 2(3). https://doi.org/10.4172/2380-2391.1000142
  • Tavakoli-Hosseinabady, B., Ziarati, P., Ballali, E., & Umachandran, K. (2018). Detoxification of heavy metals from leafy edible vegetables by agricultural waste: Apricot pit shell. Journal of Environment Analysis Toxicology, 8(1), 548. https://doi.org/10.4172/2161-0525.1000548
  • Ullah, N., Rehman, M., Ahmad, B., Ali, I., Younas, M., Aslam, M. S., Rahman, A., Taheris, E., Fatehizadeh, A., & Rezakazemi, M. (2022). Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PLoS ONE, 17(6), e0267719. https://doi.org/10.1371/journal.pone.0267719
  • Wang, Y., Gu, X., Quan, J., Xing, G., Yang, L., Zhao, C., Wu, P., Zhao, F., Hu, B., & Hu, Y. (2021). Application of magnetic fields to wastewater treatment and its mechanisms: A review. Science of the Total Environment, 773, 145476. https://doi.org/10.1016/j.scitotenv.2021.145476
  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. https://doi.org/10.5402/2011/402647
  • Yadollahpour, A., Rashidi, S., Ghotbeddin, Z., Jalilifar, M., & Rezaee, Z. (2014). Electromagnetic fields for the treatments of wastewater: A review of applications and future opportunities. Journal of Pure & Applied Microbiology, 8(5), 3711–3719.
  • Yusuf, K. O., Baiyeri, M. R., & Sakariyah, S. A. (2017). Effects of magnetically-treated water on tomato yield and uptake of heavy metals under water deficit conditions. Proceedings of the 8th International Conference on Agricultural, Environment, Biology and Medical Sciences of International Institute of Chemical, Biological and Environmental Engineering (IICBEE) (pp. 11–20).
  • Yusuf, K. O., Sakariyah, S. A., & Baiyeri, M. R. (2019). Influence of magnetized water and seed on yield and uptake of heavy metals of tomato. Natulae Scientia Biologicae, 11(1), 122–129. https://doi.org/10.15835/nsb11110360
  • Zhang, X., Wells, M., Niazi, N. K., Bolan, N., Shaheen, S., Hou, D., Gao, B., Wang, H., Rinklebe, J., & Wang, Z. (2022). Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 299, 118810. https://doi.org/10.1016/j.envpol.2022.118810