1,261
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Drought-induced agricultural livelihood vulnerability: Livelihood-based comparative analysis in Northeast highlands of Ethiopia

, , &
Article: 2238981 | Received 08 Apr 2023, Accepted 17 Jul 2023, Published online: 01 Aug 2023

References

  • Abeje, M. T., Tsunekawa, A., Haregeweyn, N., Nigussie, Z., Adgo, E., Ayalew, Z., Tsubo, M., Elias, A., Berihun, D., Quandt, A., Berihun, M. L., & Masunaga, T. (2019). Communities’ Livelihood vulnerability to climate variability in Ethiopia. Sustainability, 11(22), 6302. https://doi.org/10.3390/su11226302
  • Abson, D. J., Dougill, A. J., & Stringer, L. C. (2012). Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography, 35(1–2), 515–29. https://doi.org/10.1016/j.apgeog.2012.08.004
  • Adu, D. T., Kuwornu, J. K. M., Anim-Somuah, H., & Sasaki, N. (2018). Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region of Ghana. Kasetsart Journal of Social Sciences, 39(1), 22–32. https://doi.org/10.1016/j.kjss.2017.06.009
  • Antwi-Agyei, P., Dougill, A. J., Fraser, E. D. G., & Stringer, L. C. (2012). Characterising the nature of household vulnerability to climate variability: Empirical evidence from two regions of Ghana. Environment Development and Sustainability, 15(4), 903–926. https://doi.org/10.1007/s10668-012-9418-9
  • Antwi-Agyei, P., Quinn, C. H., Adiku, S. G. K., Codjoe, S. N. A., Dougill, A. J., Lamboll, R., & Dovie, D. B. K. (2016). Perceived stressors of climate vulnerability across scales in the Savannah zone of Ghana: A participatory approach. Regional Environmental Change, 17(1), 213–227. https://doi.org/10.1007/s10113-016-0993-4
  • Asfaw, A., Bantider, A., Simane, B., & Hassen, A. (2021). Smallholder farmers’ livelihood vulnerability to climate change-induced hazards: An agroecology-based comparative analysis in Northcentral Ethiopia (Woleka Sub-basin). Heliyon, 7(4), e06761. https://doi.org/10.1016/j.heliyon.2021.e06761
  • Asrat, P., & Simane, B. (2017). Characterizing vulnerability of crop-based rural systems to climate change and variability: Agro-ecology specific empirical evidence from the dabus watershed, Ethiopia. American Journal of Climate Change, 06(4), 643–667. https://doi.org/10.4236/ajcc.2017.64033
  • Bayissa, Y., Maskey, S., Tadesse, T., van Andel, S., Moges, S., van Griensven, A., & Solomatine, D. (2018). Comparison of the performance of six drought indices in characterizing historical drought for the upper blue nile basin, Ethiopia. Geosciences, 8(3), 81. https://doi.org/10.3390/geosciences8030081
  • Bento, V., Trigo, I., Gouveia, C., & DaCamara, C. (2018). Contribution of Land Surface Temperature (TCI) to vegetation health index: A comparative study using clear sky and all-weather climate data records. Remote Sensing, 10(9), 1324. https://doi.org/10.3390/rs10091324
  • Boka, G. T. (2017). Measuring Ethiopian households’ resilience to climate change and variability. Research Fellow at the African Development Bank Group.
  • Brooks, N., Adger, W., & Kelly, P. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 15(2), 151–163. https://doi.org/10.1016/j.gloenvcha.2004.12.006
  • Chinwendu, O. G., Sadiku, S. O., Okhimamhe, A. O., & Eichie, J. (2017). Households vulnerability and adaptation to climate variability induced water stress on downstream Kaduna River basin. American Journal of Climate Change, 06(2), 247–267. https://doi.org/10.4236/ajcc.2017.62013
  • Conway, D., Schipper, L., Yesuf, M., Kassie, M., Persechino, A., & Kebede, B. (2007). Reducing vulnerability in Ethiopia: Addressing the implications of climate change: Integration of results from Phase I. University of East Anglia, Overseas Development Group.
  • Corobov, R., Sîrodoev, I., Koeppel, S., Denisov, N., & Sîrodoev, G. (2013). Assessment of climate change vulnerability at the local level: A case study on the Dniester river basin (Moldova). Scientific World Journal, 2013, 1–13. https://doi.org/10.1155/2013/173794
  • Degefu, M. A., & Bewket, W. (2015). Trends and spatial patterns of drought incidence in the omo‐ghibe river basin, Ethiopia. Geografiska Annaler, Series A: Physical Geography, 97(2), 395–414. https://doi.org/10.1111/geoa.12080
  • Dendir, Z., & Simane, B. (2019). Livelihood vulnerability to climate variability and change in different agroecological zones of Gurage Administrative Zone, Ethiopia. Progress in Disaster Science, 3, 100035. https://doi.org/10.1016/j.pdisas.2019.100035
  • Dercon, S. (2004). Growth and shocks: Evidence from rural Ethiopia. Journal of Development Economics, 74(2), 309–329. https://doi.org/10.1016/j.jdeveco.2004.01.001
  • Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2009). Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change, 19(2), 248–255. https://doi.org/10.1016/j.gloenvcha.2009.01.002
  • Dossou, J. F., Li, X. X., Sadek, M., Almouctar, M. A. S., & Mostafa, E. (2021). Hybrid model for ecological vulnerability assessment in Benin. Scientific Reports, 11(2449). https://doi.org/10.1038/s41598-021-81742-2
  • Endalew, H. A., & Sen, S. (2020). Effects of climate shocks on Ethiopian rural households: An integrated livelihood vulnerability approach. Journal of Environmental Planning and Management, 64(3), 399–431. https://doi.org/10.1080/09640568.2020.1764840
  • Engdaw, M. M. (2014) Drought Trend Assessment Using Multi-Temporal Satellite products and In-Situ Data for Amhara Region, Ethiopia. Ph.D. Thesis
  • Eze, E., Girma, Zenebe, A. A., Zenebe, G., & Teka, A. (2020). Feasible crop insurance indexes for drought risk management in Northern Ethiopia. International Journal of Disaster Risk Reduction International Journal of Disaster Risk Reduction, 47, 47. https://doi.org/10.1016/j.ijdrr.2020.101544
  • Fritzsche, K., Schneiderbauer, S., Bubeck, P., Kienberger, S., Buth, M., Zebisch, M., & Kahlenborn, W. (2014). The Vulnerability Sourcebook: Concept and guidelines for standardised vulnerability assessments. Deutsche Gesellschaft für.
  • Gebre, E., Berhan, G., & Lelago, A. (2017). Application of remote sensing and GIS to characterize agricultural drought conditions in North Wollo Zone, Amhara regional state, Ethiopia. Journal of Natural Sciences Research, 7(17), 41–50. https://doi.org/10.7176/JNSR
  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19(1), 74–88. https://doi.org/10.1016/j.gloenvcha.2008.11.002
  • Hermans, K., & Garbe, L. (2019). Droughts, livelihoods, and human migration in northern Ethiopia. Regional Environmental Change, 19(4), 1101–1111. https://doi.org/10.1007/s10113-019-01473-z
  • Hill, R. V., & Porter, C. (2017). Vulnerability to drought and food price shocks: Evidence from Ethiopia. World Development, 96, 65–77. https://doi.org/10.1016/j.worlddev.2017.02.025
  • HRD. (2016). Joint government and humanitarian partners’ document: 2016 humanitarian requirement document. OCHA. http://reliefweb.int/report/ethiopia/ethiopia-humanitarian-requirements-document-2016
  • HRD. (2017). Joint government and humanitarian partners’ document: 2017 humanitarian requirements document. OCHA. https://reliefweb.int/report/ethiopia/ethiopia-humanitarian-requirements-document-17-january-2017
  • IPCC. (2001) Climate change 2001: impacts, adaptation, and vulnerability: Contribution of working group ii to the third assessment report. Intergovernmental Panel on climate change (IPCC), Cambridge University Press
  • Jamshidi, O., Asadi, A., Kalantari, K., Azadi, H., & Scheffran, J. (2018). Vulnerability to climate change of smallholder farmers in the Hamadan Province, Iran. Climate Risk Management, 23, 146–159. https://doi.org/10.1016/j.crm.2018.06.002
  • Jolliffe, I. T. (2002). Choosing a subset of principal components or variables. In Bickel, P., Diggle, P., Fienberg, S., Krickeberg, K., Olkin, I., Wermuth, N., & Zeger, S. (Eds.), Principal component analysis, ser. Springer Ser. Statist. (2nd ed, pp. 111–149). Springer.
  • Kiem, A. S., Johnson, F., Westra, S., van Dijk, A., Evans, J. P., O’Donnell, A., Rouillard, A., Barr, C., Tyler, J., Thyer, M., Jakob, D., Woldemeskel, F., Sivakumar, B., & Mehrotra, R. (2016). Natural hazards in Australia: Droughts. Climatic Change, 139(1), 37–54. https://doi.org/10.1007/s10584-016-1798-7
  • Lindoso, D. P., Rocha, J. D., Debortoli, N., Parente, E. F., II, Bursztyn, M., Rodrigues-Filho, S., & Rodrigues-Filho, S. (2014). Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: A case study in Ceará. Climatic Change, 127(1), 93–105. https://doi.org/10.1007/s10584-014-1116-1
  • Mahyou, H., Karrou, M., Mimouni, J., Mrabet, R., & Mourid, M. E. (2010). Drought risk assessment in pasture arid Morocco through remote sensing. African Journal of Environmental Science and Technology, 4(12), 8.
  • Maru, H., Haileslassie, A., Zeleke, T., & Esayas, B. (2021). Analysis of smallholders’ livelihood vulnerability to drought across agroecology and farm typology in the upper awash sub-basin, Ethiopia. Sustainability, 13(17), 9764. https://doi.org/10.3390/su13179764
  • Mekonen, A. A., & Berlie, A. B. (2021). Rural households’ livelihood vulnerability to climate variability and extremes: A livelihood zone-based approach in the Northeastern Highlands of Ethiopia. Ecological Processes, 10(1), 55. https://doi.org/10.1186/s13717-021-00313-5
  • Mekonnene, Z., Woldamanuel, T., & Kassa, H. (2019). Socio-ecological vulnerability to climate change/variability in central rift valley, Ethiopia. Advances in Climate Change Research, 10(1), 9–20. https://doi.org/10.1016/j.accre.2019.03.002
  • Mendoza, M., The, B., Naret, H., Ballaran, J. V., & Arias, J. (2014). Assessing vulnerability to climate change impacts in Cambodia, the Philippines and Vietnam: An analysis at the commune and household level. Journal of Environmental Science and Management, 17(2), 78–91. https://doi.org/10.47125/jesam/2014_2/08
  • Mera, G. A. (2018). Drought and its impacts in Ethiopia. Weather and Climate Extremes, 22, 24–35. https://doi.org/10.1016/j.wace.2018.10.002
  • Nair, R. S., & Bharat, A. (2011). Methodological frameworks for assessing vulnerability to climate change. Institute of Town Planner, India Journal, 8(1), 01–15.
  • Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., & Vogt, J. (2014). Exploring drought vulnerability in Africa: An indicator-based analysis to be used in early warning systems. Hydrology and Earth System Sciences, 18(5), 1591–1604. https://doi.org/10.5194/hess-18-1591-2014
  • O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., Javed, A., Bhadwal, S., Barg, S., Nygaard, L., & West, J. (2004). Mapping vulnerability to multiple stressors: Climate change and globalization in India. Global Environmental Change, 14(4), 303–313. https://doi.org/10.1016/j.gloenvcha.2004.01.001
  • OXFAM. (2011). Briefing on the horn of Africa drought 2011. Disaster risk reduction – fundamental to saving lives and reducing poverty. Oxfam GB, Oxford, UK.
  • Panthi, J., Aryal, S., Dahal, P., Bhandari, P., Krakauer, N. Y., & Pandey, P. (2015). Livelihood vulnerability approach to assessing climate change impacts on mixed agro-livestock smallholders around the Gandaki River Basin in Nepal. Regional Environmental Change, 16(4), 1121–1132. https://doi.org/10.1007/s10113-015-0833-y
  • Polsky, C., Neff, R., & Yarnal, B. (2007). Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Global Environmental Change, 17(3–4), 472–485. https://doi.org/10.1016/j.gloenvcha.2007.01.005
  • Roy, P., Pal, S. C., Chakrabortty, R., Chowdhuri, I., Saha, A., & Shit, M. (2022). Climate change and groundwater overdraft impacts on agricultural drought in India: Vulnerability assessment, food security measures and policy recommendation. Science of the Total Environment, 849, 157850. https://doi.org/10.1016/j.scitotenv.2022.157850
  • Saha, A., Pal, S. C., Chowdhuri, I., Roy, P., Chakrabortty, R., & Shit, M. (2022). Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives. Gondwana Research, S1342937X22003197. https://doi.org/10.1016/j.gr.2022.11.006
  • Sehgal, V. K., & Dhakar, R. (2016). Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations. Environmental Monitoring and Assessment, 188(3), 197. https://doi.org/10.1007/s10661-016-5187-5
  • Sharma, J., Murthy, I. K., Esteves, T., Negi, P., Sushma, S., Dasgupta, S., Barua, A., Bala, G., & Ravindranath, N. (2018). Vulnerability and risk assessment: Framework, methods, and guideline. Indian Institute of Science.
  • Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79. https://doi.org/10.1016/j.wace.2014.04.004
  • Simane, B., Zaitchik, B. F., & Foltz, J. D. (2016). Agroecosystem specific climate vulnerability analysis: Application of the livelihood vulnerability index to a tropical highland region. Mitigation and Adaptation Strategies for Global Change, 21(1), 39–65. https://doi.org/10.1007/s11027-014-9568-1
  • Teshome, A., & Zhang, J. (2019). Increase of extreme drought over Ethiopia under climate warming. Advances in Meteorology, 2019, 1–18. https://doi.org/10.1155/2019/5235429
  • Tesso, G. (2013). Individual-level vulnerability to climate change impact among crop dependent communities of western Ethiopia. Journal of Agricultural Economics and Development, 2(9), 356–370.
  • Tesso, G., Emana, B., & Ketema, M. (2012). Analysis of vulnerability and resilience to climate change-induced shocks in North Shewa, Ethiopia. Agricultural Sciences, 3(6), 871–888. https://doi.org/10.4236/as.2012.36106
  • Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C., & Diffenbaugh, N. S. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196–207. https://doi.org/10.1016/j.jhydrol.2014.12.011
  • UNDRR. (2021) Special report on drought 2021: Global Assessment Report on Disaster Risk Reduction. United Nations Office for Disaster Risk Reduction (UNDRR), Geneva.
  • USAID. (2014). Spatial climate change vulnerability assessments: A review of data, methods, and issues, African and Latin American Resilience to Climate Change (ARCC). U.S. Agency for International Devlopment.
  • van Ginkel, M., & Biradar, C. (2021). Drought early warning in agri-food systems. Climate, 9(9), 134. https://doi.org/10.3390/cli9090134
  • Wassie, S. B., Mengistu, D. A., & Birlie, A. B. (2022). Agricultural drought assessment and monitoring using MODIS-based multiple indices: The case of North Wollo, Ethiopia. Environmental Monitoring and Assessment, 194(10), 787. https://doi.org/10.1007/s10661-022-10455-4
  • Wassie, S. B., Mengistu, D. A., & Birlie, A. B. (2023). Agricultural livelihood resilience in the face of recurring droughts: Empirical evidence from northeast Ethiopia. Heliyon, 9(6), e16422. https://doi.org/10.1016/j.heliyon.2023.e16422
  • Weldegebriel, Z., & Amphune, B. (2017). Livelihood resilience in the face of recurring floods: Empirical evidence from Northwest Ethiopia. Weldegebriel and Amphune Geoenvironmental Disasters, 4(10), 1–19. https://doi.org/10.1186/s40677-017-0074-0
  • WFP. (2015) World Food Program: Year in Review 2015.
  • Wilhelmi, O. V., & Wilhite, D. A. (2002). Assessing vulnerability to agricultural drought: A Nebraska case study. Natural Hazards, 25(1), 37–58. https://doi.org/10.1023/A:1013388814894
  • Wu, J., Lin, X., Wang, M., Peng, J., & Tu, Y. (2017). Assessing agricultural drought vulnerability by a VSD Model: A case study in Yunnan Province, China. Sustainability, 9(6), 918. https://doi.org/10.3390/su9060918