621
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Effect of conservation tillage on seedling emergence and crop growth-evidences from UAV observations

ORCID Icon, , , , , & show all
Article: 2240164 | Received 23 May 2023, Accepted 21 Jun 2023, Published online: 26 Jul 2023

References

  • Alvarez, R., & Steinbach, H. S. (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1), 1–17. https://doi.org/10.1016/j.still.2009.02.005
  • Baudron, F., Tittonell, P., Corbeels, M., Letourmy, P., & Giller, K. E. (2012). Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Research, 132, 117–128. https://doi.org/10.1016/j.fcr.2011.09.008
  • Bouwman, T. I., Andersson, J. A., & Giller, K. E. (2021). Adapting yet not adopting? Conservation agriculture in central Malawi. Agriculture, Ecosystems & Environment, 307, 107224. https://doi.org/10.1016/j.agee.2020.107224
  • Drury, C. F., Tan, C. S., Welacky, T. W., Oloya, T. O., Hamill, A. S., & Weaver, S. E. (1999). Red clover and tillage influence on soil temperature, water content, and corn emergence. Agronomy Journal, 91(1), 101–108. https://doi.org/10.2134/agronj1999.00021962009100010016x
  • Eeswaran, R., Nejadhashemi, A. P., Kpodo, J., Curtis, Z. K., Adhikari, U., Liao, H. S., Li, S. G., Hernandez-Suarez, J. S., Alves, F. C., Raschke, A., & Jha, P. K. (2021). Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agriculture, Ecosystems & Environment, 320, 107612. https://doi.org/10.1016/j.agee.2021.107612
  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
  • Fabrizzi, K. P., Garcia, F. O., Costa, J. L., & Picone, L. I. (2005). Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research, 81(1), 57–69. https://doi.org/10.1016/j.still.2004.05.001
  • FAO. (2014). What is conservation agriculture? FAO CA website. http://www.fao.org/ag/ca/1a.html.
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1–25. https://doi.org/10.1016/j.agee.2003.12.018
  • Jia, K., Wu, B., Tian, Y., Li, Q., & Du, X. (2011). An effective biophysical indicator for opium yield estimation. Computers and Electronics in Agriculture, 75(2), 272–277. https://doi.org/10.1016/j.compag.2010.12.003
  • Kassam, A., Friedrich, T., & Derpsch, R. (2019). Global spread of conservation agriculture. International Journal of Environmental Studies, 76(1), 29–51. https://doi.org/10.1080/00207233.2018.1494927
  • Kassam, A., Friedrich, T., & Derpsch, R. (2022). Successful experiences and lessons from conservation agriculture worldwide. Agronomy-Basel, 12(4), 769. https://doi.org/10.3390/agronomy12040769
  • Komarek, A. M., Thierfelder, C., & Steward, P. R. (2021). Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi. Agricultural Systems, 190, 103117. https://doi.org/10.1016/j.agsy.2021.103117
  • Landers, J. N., de Freitas, P. L., de Oliveira, M. C., Neto, S. P. D., Ralisch, R., & Kueneman, E. A. (2021). Next steps for conservation agriculture. Agronomy-Basel, 11(12), 2496. https://doi.org/10.3390/agronomy11122496
  • Liang, S. L., Kustas, W., Schaepman-Strub, G., & Li, X. W. (2010). Impacts of climate change and land use changes on land surface radiation and energy budgets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3), 219–224. https://doi.org/10.1109/JSTARS.2010.2053570
  • Liu, P., He, J., Li, H., Wang, Q., Lu, C., Zheng, K., Liu, W., Zhao, H., & Lou, S. (2019). Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: A meta-analysis. International Journal of Plant Production, 13(4), 347–367. https://doi.org/10.1007/s42106-019-00060-w
  • Mogili, U. M. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/j.procs.2018.07.063
  • Mupangwa, W., Nyagumbo, I., Liben, F., Chipindu, L., Craufurd, P., & Mkuhlani, S. (2021). Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies. Agriculture, Ecosystems & Environment, 306, 107170. https://doi.org/10.1016/j.agee.2020.107170
  • Nouri, A., Yoder, D. C., Raji, M., Ceylan, S., Jagadamma, S., Lee, J., Walker, F. R., Yin, X. H., Fitzpatrick, J., Trexler, B., Arelli, P., & Saxton, A. M. (2021). Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-021-00223-6
  • Ogle, S. M., Swan, A., & Paustian, K. (2012). No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & Environment, 149, 37–49. https://doi.org/10.1016/j.agee.2011.12.010
  • Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010
  • Petito, M., Cantalamessa, S., Pagnani, G., Degiorgio, F., Parisse, B., & Pisante, M. (2022). Impact of conservation agriculture on soil erosion in the annual cropland of the Apulia Region (Southern Italy) based on the RUSLE-GIS-GEE framework. Agronomy-Basel, 12(2), 281. https://doi.org/10.3390/agronomy12020281
  • Phillips, R. E., Blevins, R. L., Thomas, G. W., Frye, W. W., & Phillips, S. H. (1980). No-tillage agriculture. Science: Advanced Materials and Devices, 208(4448), 1108–1113. https://doi.org/10.1126/science.208.4448.1108
  • Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X. Q., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020
  • Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J., & Giller, K. E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 31(4), 657–673. https://doi.org/10.1007/s13593-011-0040-2
  • Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66–87. https://doi.org/10.1016/j.still.2011.10.015
  • Su, Y., Gabrielle, B., & Makowski, D. (2021). The impact of climate change on the productivity of conservation agriculture. Nature Climate Change, 11(7), 628–633. https://doi.org/10.1038/s41558-021-01075-w
  • TerAvest, D., Carpenter-Boggs, L., Thierfelder, C., & Reganold, J. P. (2015). Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agriculture, Ecosystems & Environment, 212, 285–296. https://doi.org/10.1016/j.agee.2015.07.011
  • Thierfelder, C., Chisui, J. L., Gama, M., Cheesman, S., Jere, Z. D., Bunderson, W. T., Eash, N. S., & Rusinamhodzi, L. (2013). Maize-based conservation agriculture systems in Malawi: Long-term trends in productivity. Field Crops Research, 142, 47–57. https://doi.org/10.1016/j.fcr.2012.11.010
  • Thierfelder, C., & Mhlanga, B. (2022). Short-term yield gains or long-term sustainability? – a synthesis of conservation agriculture long-term experiments in Southern Africa. Agriculture Ecosystems & Environment, 326, 107812. https://doi.org/10.1016/j.agee.2021.107812
  • Thierfelder, C., Rusinamhodzi, L., Ngwira, A. R., Mupangwa, W., Nyagumbo, I., Kassie, G. T., & Cairns, J. E. (2015). Conservation agriculture in Southern Africa: Advances in knowledge. Renewable Agriculture and Food Systems, 30(4), 328–348. https://doi.org/10.1017/S1742170513000550
  • Van den Putte, A., Govers, G., Diels, J., Gillijns, K., & Demuzere, M. (2010). Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. The European Journal of Agronomy, 33(3), 231–241. https://doi.org/10.1016/j.eja.2010.05.008
  • Wittwer, R. A., Bender, S. F., Hartman, K., Hydbom, S., Lima, R. A. A., Loaiza, V., Nemecek, T., Oehl, F., Olsson, P. A., Petchey, O., Prechsl, U. E., Schlaeppi, K., Scholten, T., Seitz, S., Six, J., & van der Heijden, M. G. A. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34). https://doi.org/10.1126/sciadv.abg6995
  • Xiao, L. G., Kuhn, N. J., Zhao, R. Q., & Cao, L. H. (2021). Net effects of conservation agriculture principles on sustainable land use: A synthesis. Global Change Biology, 27(24), 6321–6330. https://doi.org/10.1111/gcb.15906
  • Xu, P., Li, G., Houlton, B. Z., Ma, L., Ai, D., Zhu, L., Luan, B., Zhai, S. Q., Hu, S. Y., Chen, A. P., & Zheng, Y. (2022). Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environmental Science & Technology, 56(5), 2977–2989. https://doi.org/10.1021/acs.est.1c07518
  • Yang, S., Yang, X., & Mo, J. (2018). The application of unmanned aircraft systems to plant protection in China. Precision Agriculture, 19(2), 278–292. https://doi.org/10.1007/s11119-017-9516-7
  • Yu, L., Liu, Y., Liu, T., & Yan, F. (2020). Impact of recent vegetation greening on temperature and precipitation over China. Agricultural and Forest Meteorology, 295, 108197. https://doi.org/10.1016/j.agrformet.2020.108197
  • Yu, L., Liu, Y., Liu, T., Yu, E., Bu, K., Jia, Q., Shen, L., Zheng, X., & Zhang, S. (2022). Coupling localized Noah-MP-Crop model with the WRF model improved dynamic crop growth simulation across Northeast China. Computers and Electronics in Agriculture, 201, 107323. https://doi.org/10.1016/j.compag.2022.107323
  • Yu, L. X., & Liu, T. X. (2019). The impact of artificial wetland expansion on local temperature in the growing season—the case study of the Sanjiang Plain, China. Remote Sensing, 11(24), 2915. https://doi.org/10.3390/rs11242915
  • Yu, L. X., Liu, T. X., Bu, K., Yan, F. Q., Yang, J. C., Chang, L. P., & Zhang, S. W. (2017). Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14918-4
  • Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. https://doi.org/10.1007/s11119-012-9274-5
  • Zhang, T. N., Xiong, W., Sapkota, T. B., Jat, M. L., Montes, C., Krupnik, T. J., Jat, R. K., Karki, S., Nayak, H., Al Faisal, A., & Jat, H. S. (2022). The optimization of conservation agriculture practices requires attention to location-specific performance: Evidence from large scale gridded simulations across South Asia. Field Crops Research, 282, 282. https://doi.org/10.1016/j.fcr.2022.108508
  • Zhang, Y., Gao, Y., Zhang, Y., Huang, D. D., Li, X. J., Gregorich, E., McLaughlin, N., Zhang, X. P., Chen, X. W., Zhang, S. X., Liang, A. Z., & Xiang, Y. (2022). Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon. Soil and Tillage Research, 218, 105307. https://doi.org/10.1016/j.still.2021.105307
  • Zhang, Y. J., Tan, C. J., Wang, R., Li, J., & Wang, X. L. (2021). Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. The European Journal of Agronomy, 131, 126379. https://doi.org/10.1016/j.eja.2021.126379