449
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Effect of grain/bran crude extract from Fagopyrum tataricum on hypoglycemic activity of type 2 diabetes mice and study on molecular mechanism of treatment

, , , , , & show all
Article: 2242641 | Received 19 Dec 2022, Accepted 26 Jul 2023, Published online: 24 Sep 2023

References

  • Ademiluyi, A. O., Oboh, G., Boligon, A. A., & Athayde, M. L. (2014). Effect of fermented soybean condiment supplemented diet on α-amylase and α-glucosidase activities in streptozotocin-induced diabetic rats. Journal of Functional Foods, 9, 1–17. https://doi.org/10.1016/j.jff.2014.04.003
  • Apostolidis, E., Kwon, Y. I., & Shetty, K. (2007). Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science & Emerging Technologies, 8(1), 46–54. https://doi.org/10.1016/j.ifset.2006.1006.1001
  • Belmouhoub, M., Chebout, I., & Iguer-Ouada, M. (2018). Antidiabetic and anti-hypercholesterolemic effects of flavonoid-rich fractions of rosmarinus officinalis in streptozotocin-induced diabetes in mice. Phytothérapie, 16(4), 204–210. https://doi.org/10.1007/s10298-10017-11103-10296
  • Bhandari, M. R., Nilubon, J. A., Gao, H., & Jun, K. (2008). α-glucosidase and α-amylase inhibitory activities of nepalese medicinal herb pakhanbhed (bergenia ciliata, haw.). Food Chemistry, 106(1), 247–252. https://doi.org/10.1016/j.foodchem.2007.05.077
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
  • Böni-Schnetzler, M., Thorne, J., Parnaud, G. R., Marselli, L., Ehses, J. A., Kerr-Conte, J., Pattou, F., Halban, P. A., Weir, G. C., & Donath, M. Y. (2008). Increased Interleukin (IL)-1β messenger ribonucleic acid expression in β-Cells of Individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. The Journal of Clinical Endocrinology and Metabolism, 93(10), 4065–4074. https://doi.org/10.1210/jc.2008-0396
  • Cai, W., Gu, X., & Tang, J. E. (2010). Purification, and characterisation of the flavonoids from opuntia milpa alta skin. Czech Journal of Food Sciences, 28(2), 108–116. https://doi.org/10.17221/122/2009-CJFS
  • Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research, 87(10), 840–844. https://doi.org/10.1161/01.RES.87.10.840
  • Cho, Y. J., Bae, I. Y., Inglett, G. E., & Lee, S. (2014). Utilization of tartary buckwheat bran as a source of rutin and its effect on the rheological and antioxidant properties of wheat-based products. Industrial Crops and Products, 61, 211–216. https://doi.org/10.1016/j.indcrop.2014.07.003
  • Copps, K., White, D., & M, F. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55(10), 2565–2582. https://doi.org/10.1007/s00125-012-2644-8
  • Defronzo, R. A.; Mandarino, L.; ferrannini, e. (2003). metabolic and molecular pathogenesis of type 2 diabetes mellitus. International Textbook of Diabetes Mellitus. https://doi.org/10.1002/0470862092.d0310
  • Dujic, T., Zhou, K., Donnelly, L. A., Tavendale, R., Palmer, C. N. A., & Pearson, E. R. (2014). Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS Study. Diabetes, 64(5), 1786–1793. https://doi.org/10.2337/db14-1388
  • Escandón-Rivera, S., Mata, R., & Andrade Cetto, A. (2020). Molecules isolated from mexican hypoglycemic plants: A review. Molecules, 25(18), 4145. https://doi.org/10.3390/molecules25184145
  • Fc, A., Xg, A., Cg, A., Yl, B., & Min, W. A. (2019). The distribution of D-chiro-inositol in buckwheat and its antioxidative effect in HepG2. Journal of Cereal Science, 89, 102808–102808. https://doi.org/10.1016/j.jcs.2019.102808
  • Giacco, F., Brownlee, M., & Schmidt, A. M. (2010). Oxidative Stress and Diabetic Complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  • Halliwell, B. (1991). Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine, 91(3), S14–S22. https://doi.org/10.1016/0002-9343(91)90279-7
  • Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 280(2), 309–316. https://doi.org/10.1042/bj2800309
  • Ho, C. K., Sriram, G., & Dipple, K. M. (2016). Insulin sensitivity predictions in individuals with obesity and type ii diabetes mellitus using mathematical model of the insulin signal transduction pathway. Molecular Genetics and Metabolism, 119(3), 288–292. https://doi.org/10.1016/j.ymgme.2016.09.007
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural & Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
  • Hua, F., Zhou, P., Wu, H. Y., Chu, G. X., Xie, Z. W., & Bao, G. H. (2018). Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: Molecular docking and interaction mechanism. Food & Function, 9(8), 4173–4183. https://doi.org/10.1039/C8FO00562A
  • Hu, F. B., Meigs, J. B., Li, T. Y., Rifai, N., & Manson, J. E. (2004). Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes, 53(3), 693–700. https://doi.org/10.2337/diabetes.53.3.693
  • Irena, K., Oya, B.-D., Meltem, C.-Ü., Rahmiye, E., & Hassan, Y. (2009). Scavenging capacities of some thiazolyl thiazolidine-2,4-dione compounds on superoxide radical, hydroxyl radical, and DPPH radical. Luminescence, 26(1), 10–16. https://doi.org/10.1002/bio.1105
  • Iwasaki, Y., Masayama, A., Mori, A., Ikeda, C., & Nakano, H. (2009). Composition analysis of positional isomers of phosphatidylinositol by high-performance liquid chromatography. Journal of Chromatography A, 1216(32), 6077–6080. https://doi.org/10.1016/j.chroma.2009.06.064
  • Jiaxin, R.; Tingjun, M., Effect of total flavonoid and total polyphenol from tartary buckwheat sprouts and their inhibitor activities on a-glycosidase. In Eighth International Conference on Measuring Technology and Mechatronics Automation, Macau, March 11-12, 2016.
  • Kiselyov, V. V., Versteyhe, S., Gauguin, L., & Meyts, P. D. (2009). Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Molecular Systems Biology, 5(1), 243. https://doi.org/10.1038/msb.2008.78
  • Konstantinov, A. A. (1990). Vectorial electron and proton transfer steps in the cytochrome bc1 complex. Biochimica et biophysica acta, 1018(2–3), 138–141. https://doi.org/10.1016/0005-2728(90)90234-U
  • Krentz, A. J., & Bailey, C. J. (2005). Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs, 65(3), 385–411. https://doi.org/10.2165/00003495-200565030-00005
  • Kumar, L. V., Shakila, R. J., & Jeyasekaran, G. (2019). In Vitro anti-cancer, anti-diabetic, anti-inflammation and wound healing properties of collagen peptides derived from unicorn leatherjacket (aluterus monoceros) at different hydrolysis. Turkish Journal of Fisheries and Aquatic Sciences, 19(7), 551–560. https://doi.org/10.4194/1303-2712-v19_7_02
  • Lee, L.-S., Choi, E.-J., Kim, C.-H., Sung, J.-M., Kim, Y.-B., Seo, D.-H., Choi, H.-W., Choi, Y.-S., Kum, J.-S., & Park, J.-D. (2016). Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. Journal of Cereal Science, 68, 181–186. https://doi.org/10.1016/j.jcs.2015.07.005
  • Li, H., Lv, Q., Ma, C., Qu, J., Cai, F., Deng, J., Huang, J., Ran, P., Shi, T., & Chen, Q. (2019). Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of tartary buckwheat (fagopyrum tataricum). Journal of Agricultural & Food Chemistry, 67(40), 11262–11276. https://doi.org/10.1021/acs.jafc.9b03135
  • Liu, F., Ooi, V. E. C., & Chang, S. T. (1997). Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 60(10), 763–771. https://doi.org/10.1016/S0024-3205(97)00004-0
  • Liu, B., & Zhu, Y. (2007). Extraction of Flavonoids from Flavonoid-rich parts in tartary buckwheat and identification of the main Flavonoids. Journal of Food Engineering, 78(2), 584–587. https://doi.org/10.1016/j.jfoodeng.2005.11.001
  • Lu, C., & Kang, Y. J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovascular Toxicology, 1(3), 181–193. https://doi.org/10.1385/CT:1:3:181
  • Moghaddasian, B., Eradatm, A., & Davood, E. (2012). Anoosh determination of rutin content in caper (capparis spinosa) by three analytical methods. Annals of Biological Research, 3, 4303–4306. http://scholarsresearchlibrary.com/archive.html
  • Morishita, T., Yamaguchi, H., & Degi, K. (2007). The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science, 10(1), 99–104. https://doi.org/10.1626/pps.10.99
  • Murad, H. A. S., Saleh, H. A., Abdulaziz, G. S., Abdulsattar, M. A., & Ali, S. S. (2015). Effect of metformin and pioglitazone on β-catenin and biochemical markers in sitagliptin-induced pancreatitis in diabetic rats. International Journal of Diabetes in Developing Countries, 35(3), 332–339. https://doi.org/10.1007/s13410-014-0278-8
  • Na, L., Jie, S., Wang, X. J., Sun, J. Y., Bing, W., Bing, W., Sun, J. Y., Wang, X. J., Jie, S., & Na, L. (2017). Synthesis and hydroxyl radical scavenging activity of 4-Aryl-3,4-Dihydrocoumarins. Chemistry of Natural Compounds, 53(5), 860–865. https://doi.org/10.1007/s10600-017-2141-x
  • Nan, Y., Ren, & Guixing, G. (2008). Determination of d - chiro -inositol in tartary buckwheat using high-performance liquid chromatography with an evaporative light-scattering detector. Journal of Agricultural & Food Chemistry, 56(3), 757–760. https://doi.org/10.1021/jf0717541
  • Nestler, J., Jakubowicz, E., Daniela, J., Reamer, P., Allan, & Gunn, G. (1999). Ovulatory and metabolic effects of d- chiro -inositol in the polycystic ovary syndrome. Obstetrical & Gynecological Survey, 340(17), 1314–1320. https://doi.org/10.1097/00006254-199909000-00018
  • Quijano, L., David, G.-A., Juan, A.-C., Adolfo, B.-B., Quijano, & Celia, L. (2016). Daniela acute hypoglycemic effect and phytochemical composition of ageratina petiolaris. Journal of Ethnopharmacology, 185, 341–346. https://doi.org/10.1016/j.jep.2016.03.048
  • Romanet, R., Sarhane, Z., Bahut, F., Uhl, J., Gougeon, R. D., Nikolantonaki, M., & Gougeon, R. D. (2021). Exploring the chemical space of white wine antioxidant capacity: A combined DPPH, EPR and FT-ICR-MS study. Food Chemistry, 355, 129566. https://doi.org/10.1016/j.foodchem.2021.129566
  • Savage, D. B., Petersen, K. F., & Shulman, G. I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological Reviews, 87(2), 507–520. https://doi.org/10.1152/physrev.00024.2006
  • Schroder, K., & Tschopp, J. (2010). The Inflammasomes. Cell, 140(6), 821–832. https://doi.org/10.1016/j.cell.2010.01.040
  • Sedej, I., Sakač, M., Mandić, A., Mišan, A., Tumbas, V., & Čanadanović-Brunet, J. (2012). Buckwheat (fagopyrum esculentum moench) grain and fractions: Antioxidant compounds and activities. Journal of Food Science, 77(9), C954–C959. https://doi.org/10.1111/j.1750-3841.2012.02867.x
  • Shao, S., Juanjuan, Y., Joe, R., Cuilin, C., Hua, Z., Haitian, Z., & Zhenyu, W. (2018). Protective effects on 60Co-γ radiation damage of pine cone polyphenols from pinus koraiensis-loaded chitosan microspheres in vivo. Mol, 23(6), 1392. https://doi.org/10.3390/molecules23061392
  • Slack, J., Mcmahan, C. J., Waugh, S., Schooley, K., Spriggs, M. K., Sims, J. E., & Dower, S. K. (1993). Independent binding of Interleukin-1 Alpha and Interleukin-1 Beta to Type I and Type II Interleukin-1 Receptors. The Journal of Biological Chemistry, 268(4), 2513–2524. https://doi.org/10.1016/s0021-9258(18)53806-0
  • Sroor, F. M., Abbas, S. Y., Basyouni, W. M., El-Bayouki, K. A. M., El-Mansy, M. F., Aly, H. F., Ali, S. A., Arafa, A. F., & Haroun, A. A. S. (2019). Structural characterization and in vivo anti-diabetic evaluation of some new sulfonylurea derivatives in normal and silicate coated nanoparticle forms as anti-hyperglycemic agents. Bioorganic Chemistry, 92, 103290. https://doi.org/10.1016/j.bioorg.2019.103290
  • Steadman, K., Burgoon, M., Schuster, R., Lewis, B., Edwardson, S., & Obendorf, R. (2000). Fagopyritols, d - chiro -Inositol, and Other Soluble Carbohydrates in Buckwheat Seed Milling Fractions. Journal of Agricultural & Food Chemistry, 48(7), 2843–2847. https://doi.org/10.1021/jf990709t
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119–. https://doi.org/10.1016/j.diabres.2021.109119
  • Tizghadam, P., Roufegari-Nejad, L., Asefi, N., & Jafarian Asl, P. (2021). Physicochemical characteristics and antioxidant capacity of set yogurt fortified with dill (anethume graveolens) extract. Journal of Food Measurement and Characterization, 15(4), 3088–3095. https://doi.org/10.1007/s11694-021-00881-2
  • Uemura, S., Matsushita, H., Li, W., Glassford, A. J., Asagami, T., Lee, K. H., Harrison, D. G., & Tsao, P. S. (2001). Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circulation Research, 88, 1291–1298. https://doi.org/10.1161/hh1201.092042
  • Wu, X., Huang, L., & Liu, J. (2021). Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review). Experimental and Therapeutic Medicine, 22(1), 678. https://doi.org/10.3892/etm.2021.10110
  • Xiao, J., Kai, G., Ni, X., Yang, F., & Chen, X. (2011). Interaction of natural polyphenols with α-amylase in vitro: Molecular property–affinity relationship aspect. Molecular bioSystems, 7(6), 1883–1890. https://doi.org/10.1039/c1mb05008g
  • Xiao, J., Ni, X., Kai, G., & Chen, X. (2013). A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Critical Reviews in Food Science and Nutrition, 53(5), 497–506. https://doi.org/10.1080/10408398.2010.548108
  • Yao, Y., Shan, F., Bian, J., Chen, F., Wang, M., & Ren, G. (2008). D-Chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. Journal of Agricultural & Food Chemistry, 56(21), 10027–10031. https://doi.org/10.1021/jf801879m
  • Zhong, L., Peng, X., Wu, C., Li, Q., Chen, Y., Wang, M., Li, Y., He, K., Shi, Y., & Bie, C. (2022). Polysaccharides and flavonoids from cyclocarya paliurus modulate gut microbiota and attenuate hepatic steatosis, hyperglycemia, and hyperlipidemia in nonalcoholic fatty liver disease rats with type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries. https://doi.org/10.1007/s13410-022-01080-5
  • Zhou, X.-L., Chen, Z.-D., Zhou, Y.-M., Shi, R.-H., & Li, Z.-J. (2019). The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination. Molecules, 24(17), 3092. https://doi.org/10.3390/molecules24173092
  • Zhou, T., Xu, X., Du, M., Zhao, T., & Wang, J. (2018). A preclinical overview of metformin for the treatment of type 2 diabetes. Biomedicine & Pharmacotherapy, 106, 1227–1235. https://doi.org/10.1016/j.biopha.2018.07.085