1,740
Views
1
CrossRef citations to date
0
Altmetric
Animal Husbandry & Veterinary Science

Antibacterial activity of green synthesized selenium nanoparticles using Vaccinium arctostaphylos (L.) fruit extract

, , , , , ORCID Icon, & show all
Article: 2245612 | Received 12 May 2023, Accepted 03 Aug 2023, Published online: 09 Aug 2023

References

  • Abbas, H. S., Abou Baker, D. H., & Ahmed, E. A. (2021). Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Archives of Microbiology, 203(2), 523–21. https://doi.org/10.1007/s00203-020-02042-3
  • Abu-Elghait, M., Hasanin, M., Hashem, A. H., & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040
  • Albukhaty, S., Al-Bayati, L., Al-Karagoly, H., & Al-Musawi, S. (2022). Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Animal Biotechnology, 33(5), 864–870. https://doi.org/10.1080/10495398.2020.1842751
  • Albukhaty, S., Naderi-Manesh, H., Taki, T., & Jabir, M. (2018). Poly- l -lysine-coated superparamagnetic nanoparticles: A novel method for the transfection of pro-BDNF into neural stem cells. Cells Nanomed Biotechnol, 46(sup3), S125–S132. https://doi.org/10.1080/21691401.2018.1489272
  • Alghuthaymi, M. A. (2022). Antibacterial action of insect chitosan/gum Arabic nanocomposites encapsulating eugenol and selenium nanoparticles. Journal of King Saud University-Science, 34(7), 102219. https://doi.org/10.1016/j.jksus.2022.102219
  • Alhujaily, M., Albukhaty, S., Yusuf, M., Mohammed, M. K., Sulaiman, G. M., Al-Karagoly, H., Alyamani, A. A., Albaqami, J., & AlMalki, F. A. (2022). Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering, 9(10), 541. https://doi.org/10.3390/bioengineering9100541
  • Alvi, G. B., Iqbal, M. S., Ghaith, M. M. S., Haseeb, A., Ahmed, B., & Qadir, M. I. (2021). Biogenic selenium nanoparticles (SeNps) from citrus fruit have anti-bacterial activities. Scientific Reports, 11(1), 4811. https://doi.org/10.1038/s41598-021-84099-8
  • Alyamani, A. A., Albukhaty, S., Aloufi, S., AlMalki, F. A., Al-Karagoly, H., & Sulaiman, G. M. (2021). Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: Characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules, 26(20), 6140. https://doi.org/10.3390/molecules26206140
  • Anu, K., Devanesan, S., Prasanth, R., AlSalhi, M. S., Ajithkumar, S., & Singaravelu, G. (2020). Biogenesis of selenium nanoparticles and their anti-leukemia activity. Journal of King Saud University-Science, 32(4), 2520–2526. https://doi.org/10.1016/j.jksus.2020.04.018
  • Ao, B., Lv, J., Yang, H., He, F., Hu, Y., Hu, B., Jiang, H., Huo, X., Tu, J., & Xia, X. (2022). Moringa oleifera extract mediated the synthesis of Bio-SeNPs with antibacterial activity against Listeria monocytogenes and Corynebacterium diphtheriae. LWT, 165, 113751. https://doi.org/10.1016/j.lwt.2022.113751
  • Arakha, M., Pal, S., Samantarrai, D., Panigrahi, T. K., Mallick, B. C., Pramanik, K., Mallick, B., & Jha, S. (2015). Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5(1), 14813. https://doi.org/10.1038/srep14813
  • Arana, L., Gallego, L., & Alkorta, I. (2021). Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials, 11, 1251. https://doi.org/10.3390/nano11051251
  • Bankier, C., Matharu, R., Cheong, Y., Ren, G., Cloutman-Green, E., & Ciric, L. (2019). Synergistic antibacterial effects of metallic nanoparticle combinations. Scientific Reports, 9(1), 16074. https://doi.org/10.1038/s41598-019-52473-2
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İ̇̇pek, P., Eftekhari, A., Khalilov, R., Fridunbayov, I., & Cho, W. C. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L.(Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, Biorefinery.1–11. https://doi.org/10.1007/s13399-023-04366-8
  • Barut, B., Barut, E. N., Engin, S., Ö, A., & Sezen, F. S. (2019). Investigation of the Antioxidant, α-Glucosidase Inhibitory, Anti-inflammatory, and DNA Protective Properties of Vaccinium arctostaphylos L. Turkish Journal of Pharmaceutical Sciences, 16(2), 175. https://doi.org/10.4274/tjps.galenos.2018.28247
  • Bharathi, S., Kumaran, S., Suresh, G., Ramesh, M., Thangamani, V., Pugazhvendan, S., & Sathiyamurthy, K. (2020). Extracellular synthesis of nanoselenium from fresh water bacteria Bacillus sp., and its validation of antibacterial and cytotoxic potential. Biocatalysis and Agricultural Biotechnology, 27, 101655. https://doi.org/10.1016/j.bcab.2020.101655
  • Bisht, N., Phalswal, P., & Khanna, P. K. (2022). Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances, 3(3), 1415–1431. https://doi.org/10.1039/D1MA00639H
  • Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., & Faridi-Majidi, R. (2019). Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8), 0850d0858. https://doi.org/10.1088/2053-1591/ab2558
  • Chinnaraj, S., Palani, V., Maluventhen, V., Chandrababu, R., Soundarapandian, K., Kaliannan, D., Rathinasamy, B., Liu, W.-C., Balasubramanian, B., & Arumugam, M. (2023). Silver nanoparticle production mediated by Goniothalamus wightii extract: Characterization and their potential biological applications. Particulate Science and Technology, 41(4), 517–531. https://doi.org/10.1080/02726351.2022.2123752
  • Costa, P., Gomes, A. T., Braz, M., Pereira, C., & Almeida, A. (2021). Application of the resazurin cell viability assay to monitor Escherichia coli and Salmonella typhimurium inactivation mediated by phages. Antibiotics, 10(8), 974. https://doi.org/10.3390/antibiotics10080974
  • Cremonini, E., Zonaro, E., Donini, M., Lampis, S., Boaretti, M., Dusi, S., Melotti, P., Lleo, M. M., & Vallini, G. (2016). Biogenic selenium nanoparticles: Characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology, 9(6), 758–771. https://doi.org/10.1111/1751-7915.12374
  • Dang-Bao, T., Ho, T.-T., Do, B. L., Phung Anh, N., Phan, T. D. T., Tran, T. B. Y., Duong, N. L., Hong Phuong, P., & Nguyen, T. (2022). Green orange peel-mediated bioinspired synthesis of nanoselenium and its antibacterial activity against methicillin-resistant staphylococcus aureus. ACS Omega, 7(40), 36037–36046. https://doi.org/10.1021/acsomega.2c05469
  • Dulta, K., Virk, A. K., Chauhan, P., Bohara, P., & Chauhan, P. K. (2022). Nanotechnology and applications. Applications of computational intelligence in multi-disciplinary research (pp. 129–141). Elsevier.
  • Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: Promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603–26619. https://doi.org/10.1039/D2RA04717A
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6), 1015–1019. https://doi.org/10.1007/s10529-016-2079-2
  • Escobar-Ramírez, M. C., Castañeda-Ovando, A., Pérez-Escalante, E., Rodríguez-Serrano, G. M., Ramírez-Moreno, E., Quintero-Lira, A., Contreras-López, E., Añorve-Morga, J., Jaimez-Ordaz, J., & González-Olivares, L. G. (2021). Antimicrobial activity of Se-nanoparticles from bacterial biotransformation. Fermentation, 7(3), 130. https://doi.org/10.3390/fermentation7030130
  • Fardsadegh, B., Vaghari, H., Mohammad Jafari, R., Najian, Y., & Jafarizadeh-Malmiri, H. (2019). Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis, 8(1), 191–198. https://doi.org/10.1515/gps-2018-0060
  • Filipović, N., Ušjak, D., Milenković, M. T., Zheng, K., Liverani, L., Boccaccini, A. R., & Stevanović, M. M. (2021). Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology, 8, 624621. https://doi.org/10.3389/fbioe.2020.624621
  • Galić, E., Ilić, K., Hartl, S., Tetyczka, C., Kasemets, K., Kurvet, I., Milić, M., Barbir, R., Pem, B., Erceg, I., Dutour Sikirić, M., Pavičić, I., Roblegg, E., Kahru, A., & Vinković Vrček, I. (2020). Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food and Chemical Toxicology, 144, 111621. https://doi.org/10.1016/j.fct.2020.111621
  • Garza-García, J. J., Hernández-Díaz, J. A., Zamudio-Ojeda, A., León-Morales, J. M., Guerrero-Guzmán, A., Sánchez-Chiprés, D. R., López-Velázquez, J. C., & García-Morales, S. (2021). The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element, 200(5), Research.1–21. https://doi.org/10.1007/s12011-021-02847-3
  • Gharbavi, M., Johari, B., Mousazadeh, N., Rahimi, B., Leilan, M. P., Eslami, S. S., & Sharafi, A. (2020). Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment. Molecular Biology Reports, 47(9), 6517–6529. https://doi.org/10.1007/s11033-020-05704-z
  • Gharbavi, M., Mousavi, M., Pour‐Karim, M., Tavakolizadeh, M., & Sharafi, A. (2022). Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biology International, 46(10), 1612–1624. https://doi.org/10.1002/cbin.11852
  • Guisbiers, G., Wang, Q., Khachatryan, E., Mimun, L., Mendoza-Cruz, R., Larese-Casanova, P., Webster, T., & Nash, K. (2016). Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. International Journal of Nanomedicine, 11, 3731. https://doi.org/10.2147/IJN.S106289
  • Hashem, A. H., Abdelaziz, A. M., Attia, M. S., & Salem, S. S. (2022). Selenium and nano-selenium-mediated biotic stress tolerance in plants. In Selenium and nano-selenium in environmental stress management and crop quality improvement (pp. 209–226). Springer International Publishing. https://doi.org/10.1007/978-3-031-07063-1_11
  • Huang, X., Chen, X., Chen, Q., Yu, Q., Sun, D., & Liu, J. (2016). Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomaterialia, 30, 397–407. https://doi.org/10.1016/j.actbio.2015.10.041
  • Huang, Y., Su, E., Ren, J., & Qu, X. (2021). The recent biological applications of selenium-based nanomaterials. Nano Today, 38, 101205. https://doi.org/10.1016/j.nantod.2021.101205
  • Ishak, N. M., Kamarudin, S., & Timmiati, S. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Materials Research Express, 6(11), 112004. https://doi.org/10.1088/2053-1591/ab4458
  • Kalaimurugan, D., Lalitha, K., Durairaj, K., Sivasankar, P., Park, S., Nithya, K., Shivakumar, M. S., Liu, W.-C., Balamuralikrishnan, B., & Venkatesan, S. (2022). Biogenic synthesis of ZnO nanoparticles mediated from Borassus flabellifer (Linn): Antioxidant, antimicrobial activity against clinical pathogens, and photocatalytic degradation activity with molecular modeling. Environmental Science and Pollution Research, 29(57), 86308–86319. https://doi.org/10.1007/s11356-021-18074-1
  • Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., & Bugla-Płoskońska, G. (2018). Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 19(2), 444. https://doi.org/10.3390/ijms19020444
  • Khiralla, G. M., & El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Science and Technology, 63(2), 1001–1007. https://doi.org/10.1016/j.lwt.2015.03.086
  • Khodadadi, S., Mahdinezhad, N., Fazeli-Nasab, B., Heidari, M. J., Fakheri, B., & Miri, A. (2021). Investigating the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphlyos extract and evaluating its antibacterial properties. BioMed Research International, 2021, 1–13. https://doi.org/10.1155/2021/5572252
  • Kora, A. J., & Rastogi, L. (2016). Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181, 231–236. https://doi.org/10.1016/j.jenvman.2016.06.029
  • Kumar, I., Mondal, M., & Sakthivel, N. (2019). Green synthesis of phytogenic nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 37–73). Elsevier. 978-0-08-102579-6. https://doi.org/10.1016/C2017-0-02526-0
  • Lehtinen, J., Nuutila, J., & Lilius, E. M. (2004). Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytom Part A, 60, 165–172. https://doi.org/10.1002/cyto.a.20026
  • Mann, C., & Markham, J. (1998). A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology, 84(4), 538–544. https://doi.org/10.1046/j.1365-2672.1998.00379.x
  • Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z. H., Palaniyappan, J., Mesbah, M., Chelliapan, S., & Palaninaicker, S. (2023). Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere, 323, 138263. https://doi.org/10.1016/j.chemosphere.2023.138263
  • Mariadoss, A. V. A., Saravanakumar, K., Sathiyaseelan, A., Naveen, K. V., & Wang, M.-H. (2022). Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microbial Pathogenesis, 167, 105544. https://doi.org/10.1016/j.micpath.2022.105544
  • Meenambigai, K., Kokila, R., Chandhirasekar, K., Thendralmanikandan, A., Kaliannan, D., Ibrahim, K. S., Kumar, S., Liu, W., Balasubramanian, B., & Nareshkumar, A. (2022). Green synthesis of selenium nanoparticles mediated by Nilgirianthus ciliates leaf extracts for antimicrobial activity on foodborne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking. Biological Trace Element Research, 200(6), 2948–2962. https://doi.org/10.1007/s12011-021-02868-y
  • Mellinas, C., Jiménez, A., & Garrigós Md, C. (2019). Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules, 24(22), 4048. https://doi.org/10.3390/molecules24224048
  • Mohammed, H. A., Khan, R. A., Singh, V., Yusuf, M., Akhtar, N., Sulaiman, G. M., Albukhaty, S., Abdellatif, A. A., Khan, M., Mohammed, S. A., & Al-Subaiyel, A. M. (2023). Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnology Reviews, 12(1), 20220517. https://doi.org/10.1515/ntrev-2022-0517
  • Mohtashami, R., Huseini, H. F., Nabati, F., Hajiaghaee, R., & Kianbakht, S. (2019). Effects of standardized hydro-alcoholic extract of Vaccinium arctostaphylos leaf on hypertension and biochemical parameters in hypertensive hyperlipidemic type 2 diabetic patients: A randomized, double-blind and placebo-controlled clinical trial. Avicenna Journal of Phytomedicine, 9(1), 44.
  • Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., & Pawar, S. H. (2020). Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters, 264, 127353. https://doi.org/10.1016/j.matlet.2020.127353
  • Nayak, V., Singh, K. R., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878. https://doi.org/10.1039/D0NJ05884J
  • Palomo-Siguero, M., AMa, G., Pérez-Conde, C., & Madrid, Y. (2016). Effect of selenite and selenium nanoparticles on lactic bacteria: A multi-analytical study. Microchemical Journal, 126, 488–495. https://doi.org/10.1016/j.microc.2016.01.010
  • Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on as (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157(3), 275–283. https://doi.org/10.1007/s12011-014-9891-0
  • Rangrazi, A., Bagheri, H., Ghazvini, K., Boruziniat, A., & Darroudi, M. (2020). Synthesis and antibacterial activity of colloidal selenium nanoparticles in chitosan solution: A new antibacterial agent. Materials Research Express, 6(12), 1250h1253. https://doi.org/10.1088/2053-1591/ab6a56
  • Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. https://doi.org/10.3390/molecules21070836
  • Safdar, M., Aslam, S., Akram, M., Khaliq, A., Ahsan, S., Liaqat, A., Mirza, M., Waqas, M., & Ak, W. (2023). Bombax ceiba flower extract mediated synthesis of Se nanoparticles for antibacterial activity and urea detection. World Journal of Microbiology & Biotechnology, 39(3), 80. https://doi.org/10.1007/s11274-022-03513-z
  • Salem, S. S. (2022). Bio-fabrication of selenium nanoparticles using Baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Applied Biochemistry and Biotechnology, 194(5), 1898–1910. https://doi.org/10.1007/s12010-022-03809-8
  • Salem, S. S., Badawy, M. S. E., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893. https://doi.org/10.3390/life12060893
  • Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3
  • Salem, S. S., Fouda, M. M., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2021). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science, 32(2), 351–361. https://doi.org/10.1007/s10876-020-01794-8
  • Scimone, A., Redfern, J., Patiphatpanya, P., Thongtem, T., Ratova, M., Kelly, P., & Verran, J. (2021). Development of a rapid method for assessing the efficacy of antibacterial photocatalytic coatings. Talanta, 225, 122009. https://doi.org/10.1016/j.talanta.2020.122009
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports, 30, e00615. https://doi.org/10.1016/j.btre.2021.e00615
  • Shakibaie, M., Mohazab, N. S., & Mousavi, S. A. A. (2015). Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur Journal of Microbiology, 8(9). https://doi.org/10.5812/jjm.26381
  • Singh, K. R., Nayak, V., Singh, J., Singh, A. K., & Singh, R. P. (2021). Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Advances, 11(40), 24722–24746. https://doi.org/10.1039/D1RA04273D
  • Soltani, R., Hakimi, M., Asgary, S., Ghanadian, S. M., Keshvari, M., & Sarrafzadegan, N. (2014). Evaluation of the effects of Vaccinium arctostaphylos L. Fruit extract on serum lipids and hs-CRP levels and oxidative stress in adult patients with hyperlipidemia: A randomized, double-blind, placebo-controlled clinical trial. Evidence-Based Complementary and Alternative Medicine, 2014, 1–6. https://doi.org/10.1155/2014/217451
  • Sowjanya, P., Srinivasa, B. P., & Lakshmi, N. M. (2015). Phytochemical analysis and antibacterial efficacy of Amaranthus tricolor (L) methanolic leaf extract against clinical isolates of urinary tract pathogens. African Journal of Microbiology Research, 9(20), 1381–1385. https://doi.org/10.5897/AJMR2015.7294
  • Sowndarya, P., Ramkumar, G., & Shivakumar, M. (2017). Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1490–1495. https://doi.org/10.1080/21691401.2016.1252383
  • Tran, P. A., O’Brien-Simpson, N., Reynolds, E. C., Pantarat, N., Biswas, D. P., & O’Connor, A. J. (2015). Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology, 27(4), 045101. https://doi.org/10.1088/0957-4484/27/4/045101
  • Truong, L. B., Medina-Cruz, D., Mostafavi, E., & Rabiee, N. (2021). Selenium nanomaterials to combat antimicrobial resistance. Molecules, 26(12), 3611. https://doi.org/10.3390/molecules26123611
  • Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific Reports, 10(1), 510. https://doi.org/10.1038/s41598-019-57333-7
  • Viskelis, P., Rubinskiene, M., Jasutiene, I., Sarkinas, A., Daubaras, R., & Cesoniene, L. (2009). Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. Journal of food science, 74, 157–161. https://doi.org/10.1111/j.1750-3841.2009.01066.x
  • Wang, C., Liu, X., Chen, F., Yue, L., Cao, X., Li, J., Cheng, B., Wang, Z., & Xing, B. (2022). Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 308, 119582. https://doi.org/10.1016/j.envpol.2022.119582
  • Zhang, H., Li, Z., Dai, C., Wang, P., Fan, S., Yu, B., & Qu, Y. (2021). Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environmental Research, 194, 110630. https://doi.org/10.1016/j.envres.2020.110630